Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 73: 189-203, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25251607

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a Notch3 dominant mutation-induced cerebral small vascular disease, is characterized by progressive degeneration of vascular smooth muscle cells (vSMCs) of small arteries in the brain, leading to recurrent ischemic stroke, vascular dementia and death. To date, no treatment can stop or delay the progression of this disease. Herein, we determined the therapeutic effects of stem cell factor (SCF) in combination with granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) in a mouse model of CADASIL carrying the human mutant Notch3 gene. SCF+G-CSF was subcutaneously administered for 5 days and repeated 4 times with 1-4 month intervals. We found through water maze testing that SCF+G-CSF treatment improved cognitive function. SCF+G-CSF also attenuated vSMC degeneration in small arteries, increased cerebral blood vascular density, and inhibited apoptosis in CADASIL mice. We also discovered that loss of cerebral capillary endothelial cells and neural stem cells/neural progenitor cells (NSCs/NPCs) occurred in CADASIL mice. SCF+G-CSF treatment inhibited the CADASIL-induced cell loss in the endothelia and NSCs/NPCs and promoted neurogenesis. In an in vitro model of apoptosis, SCF+G-CSF prevented apoptotic cell death in vSMCs through AKT signaling and by inhibiting caspase-3 activity. These data suggest that SCF+G-CSF restricts the pathological progression of CADASIL. This study offers new insights into developing therapeutic strategies for CADASIL.


Subject(s)
CADASIL/complications , CADASIL/drug therapy , Granulocyte Colony-Stimulating Factor/therapeutic use , Stem Cell Factor/therapeutic use , Animals , Bone Marrow Transplantation , CADASIL/genetics , CADASIL/surgery , Caspase 3/metabolism , Cell Death/drug effects , Cells, Cultured , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Disease Models, Animal , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Mutation/genetics , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Neurogenesis/drug effects , Neurogenesis/genetics , Receptor, Notch3 , Receptors, Notch/genetics , Time Factors
2.
Article in English | MEDLINE | ID: mdl-30090853

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common condition of hereditary stroke and vascular dementia. CADASIL is caused by Notch3 mutation, leading to progressive degeneration of vascular smooth muscle cells (vSMCs) of the small arteries in the brain. However, the pathogenesis of CADASIL remains largely unknown, and treatment that can stop or delay the progression of CADASIL is not yet available. Using both wild type mice and transgenic mice carrying the human mutant Notch3 gene (CADASIL mice), we have recently characterized the pathological features of CADASIL and determined the therapeutic efficacy of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) in CADASIL. Our findings have revealed novel pathological changes in the endothelium of cerebral capillaries and in the neural stem cells (NSCs). We have also observed the impairment of cognitive function in CADASIL mice. Moreover, SCF+G-CSF treatment improves cognitive function, inhibits Notch3 mutation-induced vSMC degeneration, cerebral blood bed reduction, cerebral capillary damage, and NSC loss, and increases neurogenesis and angiogenesis. Here we compile an overview of our recently published studies, which provide new insights into understanding the pathogenesis of CADASIL and developing therapeutic strategies for this devastating neurological disease.

3.
Ultrastruct Pathol ; 36(1): 48-55, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22292737

ABSTRACT

Pericytes, the specialized vascular smooth muscle cells (VSMCs), play an important role in supporting and maintaining the structure of capillaries. Pericytes show biochemical and physiologic features similar to VSMC, usually containing smooth muscle actin fibers and rich endoplasm reticulum. Studies have indicated that degeneration of VSMCs due to Notch3 mutations is the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, it remains unclear whether the Notch3 mutation also affects cerebral cortex capillary pericytes. In this ultrastructural morphologic study, the authors have observed pathological changes in the cerebral cortex capillary pericytes in aged mice that carry human mutant Notch3 genes. The number of abnormal pericytes in the cerebral cortex in Notch3 gene mutant mice was slightly increased when compared to an age-matched control group. Morphologically, the pericytes in the brains of Notch3 gene mutant mice showed more severe cellular injury, such as the presence of damaged mitochondria, secondary lysosomes, and large cytoplasmic vesicles. In addition, morphologic structures related to autophagy were also present in the pericytes of Notch3 gene mutant group. These ultrastructural morphologic alterations suggest that Notch3 mutation precipitates age-related pericytic degeneration that might result in cellular injury and trigger autophagic apoptosis. Microvascular dysfunction due to pericyte degeneration could initiate secondary neurodegenerative changes in brain parenchyma. These findings provide new insight into understanding the role of pericyte degeneration in the phathogenesis of CADASIL disease.


Subject(s)
Capillaries/ultrastructure , Cerebral Cortex/blood supply , Cerebral Cortex/ultrastructure , Pericytes/ultrastructure , Receptors, Notch/genetics , Aging/genetics , Aging/pathology , Animals , Apoptosis/genetics , CADASIL/genetics , CADASIL/pathology , Humans , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Muscle, Smooth, Vascular/ultrastructure , Receptor, Notch3
SELECTION OF CITATIONS
SEARCH DETAIL
...