Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(7): 2531-2540, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28150840

ABSTRACT

We introduce a new procedure for the efficient isolation and subsequent separation of double-wall carbon nanotubes (DWCNTs). A simplified, rate zonal ultracentrifugation (RZU) process is first applied to obtain samples of highly-enriched DWCNTs from a raw carbon nanotube material that has both single- and double-wall carbon nanotubes. Using this purified DWCNT suspension, we demonstrate for the first time that DWCNTs can be further processed using aqueous two-phase extraction (ATPE) for sequential separation by electronic structure and diameter. Additionally, we introduce analytical ultracentrifugation (AUC) as a new method for DWCNT characterization to assess DWCNT purity in separated samples. Results from AUC analysis are utilized to compare two DWCNT separation schemes. We find that RZU processing followed by sequential bandgap and diameter sorting via ATPE provides samples of highest DWCNT enrichment, whereas single-step redox sorting of the same raw material through ATPE yields SWCNT/DWCNT mixtures of similar diameter and electronic character. The presented methods offer significant advancement in DWCNT processing and separation while also providing a promising alternative for DWCNT sample analysis.

2.
Nanoscale Horiz ; 1(4): 317-324, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-32260652

ABSTRACT

Chemical control of the endohedral volume of single-wall carbon nanotubes (SWCNTs) via liquid-phase filling is established to be a facile strategy to controllably modify properties of SWCNTs in manners significant for processing and proposed applications. Encapsulation of over 20 different compounds with distinct chemical structures, functionalities, and effects is demonstrated in SWCNTs of multiple diameter ranges, with the ability to fill the endohedral volume based on the availability of the core volume and compatibility of the molecule's size with the cross-section of the nanotube's cavity. Through exclusion of ingested water and selection of the endohedral chemical environment, significant improvements to the optical properties of dispersed SWCNTs such as narrowed optical transition linewidths and enhanced fluorescence intensities are observed. Examples of tailoring modified properties towards applications or improved processing by endohedral passivation are discussed.

3.
Phys Rev Lett ; 105(1): 017403, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20867476

ABSTRACT

Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting nanotubes. This large anisotropy can be understood in terms of large orbital paramagnetism of metallic nanotubes arising from the Aharonov-Bohm-phase-induced gap opening in a parallel field, and our calculations quantitatively reproduce these results. We also compare our values with previous work for semiconducting nanotubes, which confirm that the magnetic susceptibility anisotropy does not increase linearly with the diameter for small-diameter nanotubes.

4.
Phys Rev Lett ; 104(12): 125505, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20366547

ABSTRACT

The nonlinear elasticity of thin supported membranes assembled from length purified single-wall carbon nanotubes is analyzed through the wrinkling instability that develops under uniaxial compression. In contrast with thin polymer films, pristine nanotube membranes exhibit strong softening under finite strain associated with bond slip and network fracture. We model the response as a shift in percolation threshold generated by strain-induced nanotube alignment in accordance with theoretical predictions.

5.
Phys Rev Lett ; 98(14): 147402, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17501312

ABSTRACT

We report measurements of the full intrinsic optical anisotropy of isolated single-wall carbon nanotubes (SWNTs). By combining absorption spectroscopy with transmission ellipsometry and polarization-dependent resonant Raman scattering, we obtain the real and imaginary parts of the SWNT permittivity from aligned semiconducting SWNTs dispersed in stretched polymer films. Our results are in agreement with theoretical predictions, highlighting the limited polarizability of excitons in a quasi-1D system.

6.
J Phys Chem B ; 110(47): 23801-5, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125343

ABSTRACT

Model composites of DNA-wrapped single-wall carbon nanotubes in poly(acrylic acid) are used to evaluate metrics of nanotube dispersion. By varying the pH of the precursor solutions, we introduce a controlled deviation from ideal behavior. On the basis of small-angle neutron scattering, changes in near-infrared fluorescence intensity are strongly correlated with dispersion, while optical absorption spectroscopy and resonant Raman scattering are less definitive. Our results represent the first systematic comparison of currently accepted measures of nanotube dispersion.


Subject(s)
Nanotechnology , Nanotubes, Carbon/chemistry , Acrylamides/chemistry , DNA/chemistry , Hydrogen-Ion Concentration , Spectrophotometry, Infrared , Spectrum Analysis, Raman
7.
J Gen Intern Med ; 11(6): 381; author reply 382, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8803749
SELECTION OF CITATIONS
SEARCH DETAIL
...