Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Palliat Med Rep ; 4(1): 326-333, 2023.
Article in English | MEDLINE | ID: mdl-38098857

ABSTRACT

Background: Cannabis may offer therapeutic benefits to patients with advanced cancer not responding adequately to conventional palliative treatment. However, tolerability is a major concern. Cognitive function is a potential adverse reaction to tetrahydrocannabinol containing regimens. The aim of this study was to test cognitive function in patients being prescribed dronabinol as an adjuvant palliative therapy. Methods: Adult patients with advanced cancer and severe related pain refractory to conventional palliative treatment were included in this case-series study. Patients were examined at baseline in conjunction with initiation of dronabinol therapy and at a two-week follow-up using three selected Wechsler's adult intelligence scale III neurocognitive tests: Processing Speed Index (PSI), Perceptual Organization Index (POI), and Working Memory Index (WMI). Patients were also assessed using pain visual analog scale, Major Depression Inventory, and Brief Fatigue Inventory. Results: Eight patients consented to take part in the study. Two patients discontinued dronabinol therapy, one due to a complaint of dizziness and another critical progression of cancer disease, respectively. The remaining six patients were successfully treated with a daily dosage of 12.5 mg dronabinol (p = 0.039). PSI (p = 0.020), POI (p = 0.034.), and WMI (p = 0.039). Conclusions: Cognitive function improved in this group of patients with advanced cancer in conjunction with low-dose dronabinol therapy. The cause is likely multifactorial including reported relief of cancer-associated symptoms. Further clinical investigation is required.

2.
J Intensive Care Soc ; 24(4): 442-445, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37841303

ABSTRACT

The aim of this study was to assess the feasibility and outcome of a neuropsychiatric evaluation protocol intended for adult intensive care unit survivors in a Danish regional hospital, in which a follow-up consultation was conducted 2 months after hospital discharge. Twenty-three participants were able to finalize the neuropsychiatric evaluation, and 20 (87%) among those were detected with neuropsychiatric manifestations, including cognitive impairment (n = 17; 74%) and fatigue (n = 17, 74%). This study finds a high prevalence of neuropsychiatric manifestations and fatigue, and evaluates a follow-up protocol for the ICU patient population.

3.
Purinergic Signal ; 15(2): 265-276, 2019 06.
Article in English | MEDLINE | ID: mdl-31129780

ABSTRACT

Urosepsis is a severe condition often caused by Escherichia coli that spontaneously have ascended the urinary tract to the kidneys causing pyelonephritis and potentially bacteraemia. The number of sepsis cases has been steadily increasing over the last decades, and there are still no specific, molecular supportive therapies for sepsis to supplement antibiotic treatment. P2X1 receptors are expressed by a number of immune cells including thrombocytes, which presently have been established as an important player in the acute immune response to bacterial infections. P2X1 receptor-deficient mice have been shown to be relatively protected against urosepsis, with markedly reduced levels of circulating proinflammatory cytokines and intravascular coagulation. However, here we show that continuous intravenous infusion with P2X1 receptor antagonist markedly accelerates development of a septic response to induced bacteraemia with uropathogenic E. coli. Mice exposed to the P2X1 receptor antagonists die very early with haematuria, substantially elevated plasma levels of proinflammatory cytokines, massive intravascular coagulation and a concomitant reduction in circulating thrombocytes. Interestingly, infusion of P2X1 receptor antagonists causes a marked acute reduction in circulating thrombocytes and a higher number of bacteria in the blood. These data support the notion that the number of functional thrombocytes is important for the acute defence against bacteria in the circulation and that the P2X1 receptor potentially could be essential for this response.


Subject(s)
Blood Platelets/drug effects , Escherichia coli Infections , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X1 , Sepsis , Urinary Tract Infections , Animals , Benzenesulfonates , Hemolysin Proteins , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pyelonephritis , Suramin/analogs & derivatives , Uropathogenic Escherichia coli
4.
Crit Care ; 22(1): 181, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30071869

ABSTRACT

BACKGROUND: Pore-forming proteins released from bacteria or formed as result of complement activation are known to produce severe cell damage. Inhibition of purinergic P2X receptors markedly reduces damage inflicted by cytolytic bacterial toxin and after complement activation in both erythrocytes and monocytes. P2X expression generally shows variation throughout the population. Here, we investigate correlation between P2X receptor abundance in blood cell plasma membranes and haematocrit during sepsis, in patients admitted to the emergency department (ED) or intensive care unit (ICU). METHOD: Patients admitted to the ED and successively transferred to ICU with the diagnosis sepsis (< 2 systemic inflammatory response syndrome (SIRS) criteria and suspected infection), were grouped as either blood pathogen-positive (14 patients) or blood pathogen-negative (20 patients). Blood samples drawn at ICU admission were analysed for P2X1 and P2X7 receptor abundance using indirect flow cytometry. RESULTS: Here, we find inverse correlation between P2X1 receptor expression and change in haematocrit (rs - 0.80) and haemoglobin (rs - 0.78) levels from admission to ED to arrival at ICU in patients with pathogen-positive sepsis. This correlation was not found in patients without confirmed bacteraemia. Patients with high P2X1 expression had a significantly greater change in both haematocrit (- 0.59 ± 0.36) and haemoglobin levels (- 0.182 ± 0.038 mg/dl) per hour, during the first hours after hospital admission compared to patients with low P2X1 expression (0.007 ± 0.182 and - 0.020 ± 0.058 mg/dl, respectively). CONCLUSION: High levels of P2X1 are correlated with more pronounced reduction in haematocrit and haemoglobin in patients with confirmed bacteraemia. This supports previous in vitro findings of P2X activation as a significant component in cell damage caused by pore-forming bacterial toxins and complement-dependent major attack complex. These data suggest a new potential target for future therapeutics in initial stages of sepsis.


Subject(s)
Hematocrit/methods , Receptors, Purinergic P2X1/analysis , Sepsis/blood , Aged , Bacterial Toxins/blood , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Enzyme-Linked Immunosorbent Assay/methods , Female , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/pathogenicity , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/pathogenicity , Hematocrit/statistics & numerical data , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Prospective Studies , Receptors, Purinergic P2X1/blood , Systemic Inflammatory Response Syndrome , Vitamin D/analysis , Vitamin D/blood
5.
J Membr Biol ; 250(3): 301-313, 2017 06.
Article in English | MEDLINE | ID: mdl-28488084

ABSTRACT

Uropathogenic Escherichia coli often produce the virulence factor α-hemolysin (HlyA), and the more severe the infection, the likelier it is to isolate HlyA-producing E. coli from patients. HlyA forms pores upon receptor-independent insertion of the toxin into biological membranes and it has been substantiated that HlyA-induced hemolysis is amplified by toxin-induced ATP release and activation of P2X receptors. Thus, hemolysis inflicted by HlyA is a protracted process involving signal transduction. It consists of early, marked cell shrinkage followed by swelling and eventually lysis. The initially shrinkage is a consequence of a substantial Ca2+-influx and activation of Ca2+-sensitive K+ and Cl- channels (KCa3.1/TMEM16A). The shrinkage is followed by gradual cell swelling, which ultimately lyses the cells. These findings clearly show that the HlyA pore provides a substantial volume challenge for the cells, and the fate of the given cell is co-determined by intrinsic erythrocytal volume regulation. We therefore speculated that other mechanisms involved in erythrocyte volume regulation may influence the hemolytic process inflicted by HlyA. Strikingly, HlyA-induced hemolysis is markedly reduced in erythrocytes isolated from NKCC1-deficient (NKCC1-/-) mice compared to controls. The NKCC1 inhibitors furosemide and bumetanide concentration-dependently inhibit HlyA-induced lysis of human and murine erythrocytes. However, in high concentrations bumetanide further reduced hemolysis in erythrocytes from NKCC1-/- mice and, thus, also exhibit indirect effects on hemolysis. The effect of loop diuretics on the hemolysis is not unique to HlyA but is similarly seen in LtxA- and α-toxin-induced hemolysis. Bumetanide clearly potentiates HlyA-induced volume reduction and delays the following erythrocyte swelling. This allows increased phagocytosis of damaged erythrocytes by THP-1 cell as a result of prolonged cell shrinkage. These data suggest that erythrocyte susceptibility to cytolysins is modified by NKCC1 and signifies intrinsic volume regulators as important determinants of cellular outcome of pore-forming toxins.


Subject(s)
Escherichia coli/chemistry , Hemolysin Proteins/pharmacology , Animals , Bacterial Proteins/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Furosemide/pharmacology , Hemolysis/drug effects , Humans , Mice , Mice, Knockout , Phagocytosis/drug effects , Solute Carrier Family 12, Member 2/deficiency , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , THP-1 Cells
6.
Article in English | MEDLINE | ID: mdl-28428949

ABSTRACT

α-haemolysin (HlyA)-producing Escherichia coli commonly inflict severe urinary tract infections, including pyelonephritis, which comprises substantial risk for sepsis. In vitro, the cytolytic effect of HlyA is mainly mediated by ATP release through the HlyA pore and subsequent P2X1/P2X7 receptor activation. This amplification of the lytic process is not unique to HlyA but is observed by many other pore-forming proteins including complement-induced haemolysis. Since free hemoglobin in the blood is known to be associated with a worse outcome in sepsis one could speculate that inhibition of P2X receptors would ameliorate the course of sepsis. Surprisingly, this study demonstrates that [Formula: see text] and [Formula: see text] mice are exceedingly sensitive to sepsis with uropathogenic E. coli. These mice have markedly lower survival, higher cytokine levels and activated intravascular coagulation. Quite the reverse is seen in [Formula: see text] mice, which had markedly lower cytokine levels and less coagulation activation compared to controls after exposure to uropathogenic E. coli. The high cytokine levels in the [Formula: see text] mouse are unexpected, since P2X7 is implicated in caspase-1-dependent IL-1ß production. Here, we demonstrate that IL-1ß production during sepsis with uropathogenic E. coli is mediated by caspase-8, since caspase-8 and RIPK3 double knock out mice show substantially lower cytokine during sepsis and increased survival after injection of TNFα. These data support that P2X7 and P2X4 receptor activation has a protective effect during severe E. coli infection.


Subject(s)
Disease Susceptibility , Escherichia coli Infections/pathology , Receptors, Purinergic P2X1/deficiency , Receptors, Purinergic P2X4/deficiency , Receptors, Purinergic P2X7/deficiency , Sepsis/pathology , Animals , Disease Models, Animal , Escherichia coli Infections/genetics , Mice , Mice, Knockout , Survival Analysis , Treatment Outcome
7.
Infect Immun ; 84(11): 3114-3130, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27528275

ABSTRACT

α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury.


Subject(s)
Aggregatibacter actinomycetemcomitans/metabolism , Bacterial Toxins/toxicity , Escherichia coli/metabolism , Hemolysin Proteins/toxicity , Monocytes/drug effects , Receptors, Purinergic P2X/physiology , Bacterial Toxins/metabolism , Cell Death/drug effects , Cytoplasm/metabolism , Cytotoxins/metabolism , Erythrocytes/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/toxicity , Exotoxins/metabolism , Exotoxins/toxicity , Hemolysin Proteins/metabolism , Hemolysis/physiology , Humans , Monocytes/metabolism
8.
J Biol Chem ; 290(23): 14776-84, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25911098

ABSTRACT

Urinary tract infections are commonly caused by α-hemolysin (HlyA)-producing Escherichia coli. In erythrocytes, the cytotoxic effect of HlyA is strongly amplified by P2X receptors, which are activated by extracellular ATP released from the cytosol of the erythrocytes. In renal epithelia, HlyA causes reversible [Ca(2+)]i oscillations, which trigger interleukin-6 (IL-6) and IL-8 release. We speculate that this effect is caused by HlyA-induced ATP release from the epithelial cells and successive P2 receptor activation. Here, we demonstrate that HlyA-induced [Ca(2+)]i oscillations in renal epithelia were completely prevented by scavenging extracellular ATP. In accordance, HlyA was unable to inflict any [Ca(2+)]i oscillations in 132-1N1 cells, which lack P2R completely. After transfecting these cells with the hP2Y2 receptor, HlyA readily triggered [Ca(2+)]i oscillations, which were abolished by P2 receptor antagonists. Moreover, HlyA-induced [Ca(2+)]i oscillations were markedly reduced in medullary thick ascending limbs isolated from P2Y2 receptor-deficient mice compared with wild type. Interestingly, the following HlyA-induced IL-6 release was absent in P2Y2 receptor-deficient mice. This suggests that HlyA induces ATP release from renal epithelia, which via P2Y2 receptors is the main mediator of HlyA-induced [Ca(2+)]i oscillations and IL-6 release. This supports the notion that ATP signaling occurs early during bacterial infection and is a key player in the further inflammatory response.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli Proteins/immunology , Escherichia coli/physiology , Hemolysin Proteins/immunology , Interleukin-6/immunology , Kidney/microbiology , Receptors, Purinergic P2Y2/immunology , Urothelium/microbiology , Adenosine Triphosphate/immunology , Animals , Calcium Signaling , Cell Line , Dogs , Escherichia coli/immunology , Humans , Kidney/immunology , Mice , Urothelium/immunology
9.
Toxins (Basel) ; 5(3): 472-87, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23462688

ABSTRACT

The pore-forming exotoxin α-hemolysin from E. coli causes a significant volume reduction of human erythrocytes that precedes the ultimate swelling and lysis. This shrinkage results from activation of Ca2+-sensitive K+ (KCa3.1) and Cl- channels (TMEM16A) and reduced functions of either of these channels potentiate the HlyA-induced hemolysis. This means that Ca2+-dependent activation of KCa3.1 and TMEM16A protects the cells against early hemolysis. Simultaneous to the HlyA-induced shrinkage, the erythrocytes show increased exposure of phosphatidylserine (PS) in the outer plasma membrane leaflet, which is known to be a keen trigger for phagocytosis. We hypothesize that exposure to HlyA elicits removal of the damaged erythrocytes by phagocytic cells. Cultured THP-1 cells as a model for erythrocytal phagocytosis was verified by a variety of methods, including live cell imaging. We consistently found the HlyA to very potently trigger phagocytosis of erythrocytes by THP-1 cells. The HlyA-induced phagocytosis was prevented by inhibition of KCa3.1, which is known to reduce PS-exposure in human erythrocytes subjected to both ionomycin and HlyA. Moreover, we show that P2X receptor inhibition, which prevents the cell damages caused by HlyA, also reduced that HlyA-induced PS-exposure and phagocytosis. Based on these results, we propose that erythrocytes, damaged by HlyA-insertion, are effectively cleared from the blood stream. This mechanism will potentially reduce the risk of intravascular hemolysis.


Subject(s)
Bacterial Toxins/toxicity , Cytophagocytosis/drug effects , Erythrocytes/drug effects , Escherichia coli Proteins/toxicity , Hemolysin Proteins/toxicity , Hemolysis/drug effects , Receptors, Purinergic P2X/physiology , Cell Culture Techniques , Cell Line , Cell Shape/drug effects , Cell Size/drug effects , Erythrocytes/cytology , Erythrocytes/metabolism , Flow Cytometry , Fluorescent Dyes , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Macrophages/cytology , Potassium Channel Blockers/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL