Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 54(2): 299-303, 2018 04.
Article in English | MEDLINE | ID: mdl-29250784

ABSTRACT

Vitronectin (Vn) is a glycoprotein that serves a wide variety of roles in multicellular organisms. It was first identified in multicellular animals but has also been isolated from land plants and some algae, where it appears to serve as an extracellular adhesive molecule. In order to further elucidate presence and localization of a Vn-like protein and its potential role in algae, we surveyed different morphological regions of 24 species of macro- and microalgae and three species of cyanobacteria for the presence of a Vn-like protein. Vn-like proteins were not detected in any of the species of cyanobacteria, microalgae or Rhodophyta investigated. They were detected in several species of the Phaeophyceae and Chlorophyta where their localization was limited to the holdfast and rhizoids of these organisms, respectively. Detection of a Vn-like protein (between 0.0125 and 0.097 µg · µL-1 protein extract) was therefore limited to locations associated with substrate attachment.


Subject(s)
Algal Proteins/analysis , Bacterial Proteins/analysis , Cyanobacteria/chemistry , Microalgae/chemistry , Seaweed/chemistry , Vitronectin/analysis
2.
J Phycol ; 48(2): 264-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-27009715

ABSTRACT

The attachment of the psammophytic alga Caulerpa mexicana Sond. ex Kütz., a coenocytic green alga, to crushed CaCO3 particles was examined utilizing the scanning electron microscope and fluorescently tagged antivitronectin antibodies. Plants attached to the substrate through morphologically variable tubular rhizoidal extensions that grew from the stolon. In this study, we describe two means of attachment: (i) the rhizoid attachment to limestone gravel by thigmoconstriction, where tubular extensions of the rhizoid wrapped tightly around the substrate and changed morphology to fit tightly into crevices in the limestone, and (ii) through adhesion pads that formed in contact with the limestone granules. Flattened rhizoidal pads were observed to secrete a fibrillar material that contained vitronectin-like proteins identified through immunolocialization and that facilitated binding of the rhizoid to the substrate.

3.
Biol Bull ; 209(1): 31-48, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16110092

ABSTRACT

Here we characterize the germinal epithelia of both sexes of Strongylocentrotus droebachiensis, the green sea urchin, throughout its annual gametogenic cycle, using light and electron microscopy and cytochemistry. In both sexes, germinal epithelia include two interacting cellular populations: nutritive phagocytes (NPs) and germ cells. After spring spawning, NPs accumulate nutrients; amitotic oogonia and often mitotic spermatogonia occur in clusters beneath NPs; and subsequent gametogenic stages are residual or absent. During the summer, NP nutrients are mobilized for use in vitellogenesis by residual primary oocytes or to support limited spermatogenesis. In addition, some residual primary oocytes may degenerate and be phagocytized by NPs. Significant nutrient mobilization from NPs and substantial gonial cell mitoses (indicative of new gametogenesis) occur in the fall. In both sexes, all of these changes are facilitated by NPs that form basal incubation chambers near the gonadal wall and within which germ cells are surrounded by nutrients released from the NPs. In females, germ cells at several stages of gametogenesis may be housed in separate chambers in the same NP. Primary oocytes also carry out jelly coat formation, meiosis, and cortical granule translocation within NP incubation chambers. In males, many NPs cooperate to provide large continuous chambers that contain spermatogenic cells at diverse stages. In both sexes these chambers persist throughout the year and isolate gametogenesis from the gonadal lumen. NPs become slender and shorten as their nutrients are depleted. Ova or spermatozoa are stored in the gonadal lumen. Post-spawning, NPs phagocytize differentiated germ cells while simultaneously enclosing intact gonial and residual gametogenic cells in basal chambers near the gonadal wall. In light of our observations, we suggest investigating proteins that may be important in the structural, phagocytic, and nutritive functions of NPs and for which corresponding genes have already been identified in the genome of S. purpuratus, the closely related purple sea urchin.


Subject(s)
Gametogenesis/physiology , Ovum/physiology , Phagocytes/physiology , Spermatozoa/physiology , Strongylocentrotus/physiology , Animals , Female , Male , Ovary/cytology , Seasons , Strongylocentrotus/cytology , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...