Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38906273

ABSTRACT

BACKGROUND: Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as SARS-CoV-2 and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of pro-inflammatory cytokines/chemokines. However, excessive pro-inflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES: Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS: HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS: We show that toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust pro-inflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSION: These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs. CLINICAL IMPLICATION: These findings may be exploited for therapeutic strategies aiming to ameliorate the cytokine storm in response to respiratory virus infection.

2.
Brain Res ; 1818: 148527, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37567547

ABSTRACT

It is well known that antipsychotic drugs (APDs) are more effective in reducing symptoms in women than in men, and that women are more sensitive to the side effects of APDs. Therefore, it is of great importance that sex differences in drug responses are considered already in the early stages of drug development. In this study, we investigated whether sex-specific differences could be observed in response to the commonly prescribed APDs olanzapine and risperidone using the conditioned avoidance response (CAR) test. To this end we tested the effect of 1.25 and 2.5 mg/kg olanzapine and 0.25 and 0.4 mg/kg risperidone using female and male Wistar rats in the CAR test. Whereas there were no significant differences between the female and male rats in response to either dose of olanzapine administration, an injection of 0.4 mg/kg risperidone significantly suppressed avoidance more in female rats than in male rats. In addition, we found that the estrous cycle of the female rats did not have a significant effect on the avoidance response. In conclusion, we show that there are sex-specific differences as well as similarities between female and male rats in the CAR test and novel APDs should be tested on female and male rats in the future.


Subject(s)
Antipsychotic Agents , Risperidone , Female , Rats , Male , Animals , Olanzapine/pharmacology , Risperidone/pharmacology , Sex Characteristics , Benzodiazepines/pharmacology , Rats, Sprague-Dawley , Rats, Wistar , Antipsychotic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...