Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 14(4): 415-28, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22567721

ABSTRACT

Gas emissions from anthropic activities, particularly CO2, are responsible for global warming. Soil is a major carbon sink on a planetary level, thereby contributing to mitigate greenhouse effect. In the present work, the objectives were: 1) to evaluate the topsoil carbon stock of different forest stands in NE Italy, and 2) to outline the relationships among humus forms, soil organic matter dynamics, and actual carbon stock under different vegetation coverage, with reference to climate change. Five forest stands and the related topsoils, were selected in the Dolomites area. The humus forms were examined in the field and samples were carried to the lab for further physical-chemical analyses. The carbon stock for each soil was calculated by means of pedotransfer functions. The less developed humus forms, as the Dysmull and the Hemimoder, presented the highest carbon storage capacity (168 t/y and 129 t/y), followed by Lithoamphimus (123 t/y) and Eu-amphimus (96 t/y), and by Oligomull (86 t/y). Organic horizons proved to recover 36% of the total carbon stocked along the soil profile, and this points to humus layers as a fundamental tool in carbon stock evaluation. Positive correlations between elevation, humus forms and soil carbon pools were found.


Subject(s)
Carbon Dioxide/metabolism , Carbon Sequestration , Carbon/metabolism , Soil/chemistry , Trees/metabolism , Ecosystem , Global Warming , Greenhouse Effect , Italy , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...