Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 27(8): 1837-1857, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34539119

ABSTRACT

Global warming has led to severe drought conditions. The selection of plant varieties that can withstand drought and produce increased yields are of utmost importance. In the current study, secondary metabolites, seed trait and fiber characteristic of cottonseeds (Gossypium hirsutum) exposed to double and third water stress exposure was investigated. Total phenol and tannin content in W1S33 increased significantly after third water stress exposure. Accumulation of wax was enhanced in seeds of W3S33 and W3S34 that were subjected to third water stress. Fiber quality parameters decreased when cottonseeds were rainfed. High irrigation resulted in fragile and delicate fiber. Seeds grown under 66% FC irrigation saved water and produced seeds that had the potential of producing high quality fibers. In silico analysis was performed on cellulose synthase A (CesA) and xyloglucan endotransglycosylase (XET) enzymes present in Gossypium hirsutum. The intracellular locations of the CesA and XET1 enzymes are the plasma membrane and cell wall, respectively. Proline is conserved in the C-terminal of the CesA enzyme and plays an important role in enzyme functionality. This study provides a better understanding as to the mechanisms by which the plant can tolerate and combat water stress conditions as well as reduce water consumption. In order to grow cotton seeds with desirable morphometric characteristics and optimal fibers under water stress exposure and in dry areas, it is better to use seeds that are irrigated under optimal irrigation conditions, ie 66% FC.

2.
Data Brief ; 2: 26-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26217700

ABSTRACT

Here, we present the data from a comparative physiology and proteomics approach used to analyze the response of two wheat genotypes (SERI M 82 (SE) and SW89.5193/kAu2 (SW)) with contrasting responses to drought stress. Proteomic analysis resulted in identification of 49 unique proteins with significant change in abundance (2-fold) under water shortage in roots and leaves. Gene ontology analysis of drought-responsive proteins (DRPs) suggested an induction of proteins related to cell wall biogenesis, ATP synthesis, photosynthesis, and carbohydrate/energy metabolism in leaves under stress condition. A large fraction of root proteins were identified to be involved in defense and oxidative stress response. In addition, a significant change was detected in proteins related to protein synthesis, ATP synthesis, and germin-like proteins in response to drought stress. A detailed analysis of this data may be obtained from Ref. [1].

3.
J Proteomics ; 114: 1-15, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25449836

ABSTRACT

Comparative physiology and proteomic analyses were conducted to monitor the stress response of two wheat genotypes (SERI M 82 (SE) and SW89.5193/kAu2 (SW)) with contrasting responses to drought stress. Under stress condition, the tolerant genotype (SE) produced higher shoot and root biomasses, longer roots and accumulated higher level of ABA in leaves. Physiological measurements suggested that the SE genotype was more efficient in water absorption and could preserve more water presumably by controlling stomata closure. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. Interestingly, the abundance of proteins such as endo-1,3-beta-glucosidase, peroxidase, SAMS, and MDH significantly increased in roots or leaves of the SE genotype and decreased in that of the SW one. In addition, an increased abundance of APX was detected in leaves and roots of the SE genotype and a decreased abundance of 14-3-3 and ribosomal proteins were noted in the SW one in response to drought stress. Our findings led to a better understanding about the integrated physiology and proteome responses of wheat genotypes with nearly contrasting responses to drought stress. BIOLOGICAL SIGNIFICANCE: We applied a comparative physiology and proteomic analysis to decipher the differential responses of two contrasting wheat genotypes to drought stress. Based on physiological measurements the tolerant genotype (SE) showed better drought response by developing deep root system, higher root and shoot biomasses, and higher level of ABA in leaves. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. In addition, the abundance of proteins such as glucan endo-1,3-beta-glucosidase, peroxidases, SAMS, and MDH increased in roots or leaves of the tolerant genotype (SE) and decreased in that of the sensitive genotype (SW). Overall, proteins related to oxidative stress, protein processing and photosynthesis showed decreased abundance to a greater extent in the sensitive genotype (SW).


Subject(s)
Acclimatization/physiology , Droughts , Physiology, Comparative , Proteomics , Triticum/physiology , Genotype , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/metabolism , Plant Roots/physiology , Proteome/analysis , Stress, Physiological , Triticum/anatomy & histology , Triticum/genetics , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...