Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 11(8): 885-895, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-33479683

ABSTRACT

Based on crystal structures of Trypanosoma brucei methionyl-tRNA synthetase (TbMetRS) bound to inhibitors, we designed, synthesized, and evaluated two series of novel TbMetRS inhibitors targeting this parasite enzyme. One series has a 1,3-dihydro-imidazol-2-one containing linker, the other has a rigid fused aromatic ring in the linker. For both series of compounds, potent inhibition of parasite growth was achieved with EC50 < 10 nM and most compounds exhibited low general toxicity to mammalian cells with CC50s > 20 000 nM. Selectivity over human mitochondrial methionyl tRNA synthetase was also evaluated, using a cell-based mitochondrial protein synthesis assay, and selectivity in a range of 20-200-fold was achieved. The inhibitors exhibited poor permeability across the blood brain barrier, necessitating future efforts to optimize the compounds for use in late stage human African trypanosomiasis.

2.
ACS Med Chem Lett ; 10(1): 105-110, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655955

ABSTRACT

Better therapeutics are greatly needed to treat patients infected with trypanosomatid parasites such as Trypanosoma cruzi or Trypanosoma brucei. This report describes 28 new imidazopyridines and triazolopyrimidines with potent and selective antitrypanosomal activity. Drug-like properties were demonstrated in a number of in vitro assays. In vivo efficacy was observed for 19 and 20 in acute mouse models of T. cruzi infection. Compounds 19 and 20 represent potential leads for new anti-Chagas disease drugs.

3.
Article in English | MEDLINE | ID: mdl-28848016

ABSTRACT

Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 µg/ml against Staphylococcus, Enterococcus, and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Positive Bacteria/drug effects , Methionine-tRNA Ligase/antagonists & inhibitors , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Blood Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Escherichia coli/drug effects , Female , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Inactivation, Metabolic , Mice , Microbial Sensitivity Tests , Microsomes, Liver , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...