Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 715717, 2021.
Article in English | MEDLINE | ID: mdl-34568300

ABSTRACT

The neonatal heart represents an attractive source of regenerative cells. Here, we report the results of a randomized, controlled, investigator-blinded preclinical study, which assessed the safety and effectiveness of a matrix graft cellularized with cardiac pericytes (CPs) in a piglet model of pulmonary artery (PA) reconstruction. Within each of five trios formed by 4-week-old female littermate piglets, one element (the donor) was sacrificed to provide a source of CPs, while the other two elements (the graft recipients) were allowed to reach the age of 10 weeks. During this time interval, culture-expanded donor CPs were seeded onto swine small intestinal submucosa (SIS) grafts, which were then shaped into conduits and conditioned in a flow bioreactor. Control unseeded SIS conduits were subjected to the same procedure. Then, recipient piglets were randomized to surgical reconstruction of the left PA (LPA) with unseeded or CP-seeded SIS conduits. Doppler echocardiography and cardiac magnetic resonance imaging (CMRI) were performed at baseline and 4-months post-implantation. Vascular explants were examined using histology and immunohistochemistry. All animals completed the scheduled follow-up. No group difference was observed in baseline imaging data. The final Doppler assessment showed that the LPA's blood flow velocity was similar in the treatment groups. CMRI revealed a mismatch in the average growth of the grafted LPA and contralateral branch in both treatment groups. Histology of explanted arteries demonstrated that the CP-seeded grafts had a thicker luminal cell layer, more intraparietal arterioles, and a higher expression of endothelial nitric oxide synthase (eNOS) compared with unseeded grafts. Moreover, the LPA stump adjacent to the seeded graft contained more elastin and less collagen than the unseeded control. Syngeneic CP engineering did not accomplish the primary goal of supporting the graft's growth but was able to improve secondary outcomes, such as the luminal cellularization and intraparietal vascularization of the graft, and elastic remodeling of the recipient artery. The beneficial properties of neonatal CPs may be considered in future bioengineering applications aiming to reproduce the cellular composition of native arteries.

2.
Free Radic Biol Med ; 165: 137-151, 2021 03.
Article in English | MEDLINE | ID: mdl-33497799

ABSTRACT

AIMS: Tissue engineering aims to improve the longevity of prosthetic heart valves. However, the optimal cell source has yet to be determined. This study aimed to establish a mechanistic rationale supporting the suitability of human adventitial pericytes (APCs). METHODS AND RESULTS: APCs were immunomagnetically sorted from saphenous vein leftovers of patients undergoing coronary artery bypass graft surgery and antigenically characterized for purity. Unlike bone marrow-derived mesenchymal stromal cells (BM-MSCs), APCs were resistant to calcification and delayed osteochondrogenic differentiation upon high phosphate (HP) induction, as assessed by cytochemistry and expression of osteogenic markers. Moreover, glycolysis was activated during osteogenic differentiation of BM-MSCs, whereas APCs showed no increase in glycolysis upon HP challenge. The microRNA-132-3p (miR-132), a known inhibitor of osteogenesis, was found constitutively expressed by APCs and upregulated following HP stimulation. The anti-calcific role of miR-132 was further corroborated by in silico analysis, luciferase assays in HEK293 cells, and transfecting APCs with miR-132 agomir and antagomir, followed by assessment of osteochondrogenic markers. Interestingly, treatment of swine cardiac valves with APC-derived conditioned medium conferred them with resistance to HP-induced osteogenesis, with this effect being negated when using the medium of miR-132-silenced APCs. Additionally, as an initial bioengineering step, APCs were successfully engrafted onto pericardium sheets, where they proliferated and promoted aortic endothelial cells attraction, a process mimicking valve endothelialization. CONCLUSIONS: Human APCs are resistant to calcification compared with BM-MSCs and convey the anti-calcific phenotype to heart valves through miR-132. These findings may open new important avenues for prosthetic valve cellularization.


Subject(s)
MicroRNAs , Osteogenesis , Aortic Valve , Cell Differentiation , Cells, Cultured , Endothelial Cells , HEK293 Cells , Humans , MicroRNAs/genetics , Osteogenesis/genetics , Pericytes
3.
Front Cardiovasc Med ; 7: 598890, 2020.
Article in English | MEDLINE | ID: mdl-33330660

ABSTRACT

Cell therapies are emerging as a new therapeutic frontier for the treatment of ischemic disease. However, femoral occlusions can be challenging environments for effective therapeutic cell delivery. In this study, cell-engineered hybrid scaffolds are implanted around the occluded femoral artery and the therapeutic benefit through the formation of new collateral arteries is investigated. First, it is reported the fabrication of different hybrid "hard-soft" 3D channel-shaped scaffolds comprising either poly(ε-caprolactone) (PCL) or polylactic-co-glycolic acid (PLGA) and electro-spun of gelatin (GL) nanofibers. Both PCL-GL and PLGA-GL scaffolds show anisotropic characteristics in mechanical tests and PLGA displays a greater rigidity and faster degradability in wet conditions. The resulting constructs are engineered using human adventitial pericytes (APCs) and both exhibit excellent biocompatibility. The 3D environment also induces expressional changes in APCs, conferring a more pronounced proangiogenic secretory profile. Bioprinting of alginate-pluronic gel (AG/PL), containing APCs and endothelial cells, completes the hybrid scaffold providing accurate spatial organization of the delivered cells. The scaffolds implantation around the mice occluded femoral artery shows that bioengineered PLGA hybrid scaffold outperforms the PCL counterpart accelerating limb blood flow recovery through the formation arterioles with diameters >50 µm, demonstrating the therapeutic potential in stimulating reparative angiogenesis.

4.
J Am Heart Assoc ; 9(4): e014214, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32067581

ABSTRACT

Background We have previously reported the possibility of using pericytes from leftovers of palliative surgery of congenital heart disease to engineer clinically certified prosthetic grafts. Methods and Results Here, we assessed the feasibility of using prosthetic conduits engineered with neonatal swine pericytes to reconstruct the pulmonary artery of 9-week-old piglets. Human and swine cardiac pericytes were similar regarding anatomical localization in the heart and antigenic profile following isolation and culture expansion. Like human pericytes, the swine surrogates form clones after single-cell sorting, secrete angiogenic factors, and extracellular matrix proteins and support endothelial cell migration and network formation in vitro. Swine pericytes seeded or unseeded (control) CorMatrix conduits were cultured under static conditions for 5 days, then they were shaped into conduits and incubated in a flow bioreactor for 1 or 2 weeks. Immunohistological studies showed the viability and integration of pericytes in the outer layer of the conduit. Mechanical tests documented a reduction in stiffness and an increase in strain at maximum load in seeded conduits in comparison with unseeded conduits. Control and pericyte-engineered conduits were then used to replace the left pulmonary artery of piglets. After 4 months, anatomical and functional integration of the grafts was confirmed using Doppler echography, cardiac magnetic resonance imaging, and histology. Conclusions These findings demonstrate the feasibility of using neonatal cardiac pericytes for reconstruction of small-size branch pulmonary arteries in a large animal model.


Subject(s)
Blood Vessel Prosthesis , Heart Defects, Congenital/surgery , Pericytes , Pulmonary Artery/surgery , Tissue Engineering , Animals , Animals, Newborn , Cell Culture Techniques , Feasibility Studies , Female , Swine , Tissue Scaffolds
5.
Arterioscler Thromb Vasc Biol ; 39(6): 1113-1124, 2019 06.
Article in English | MEDLINE | ID: mdl-31018661

ABSTRACT

Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells. This involves the transcriptional modulator CITED2 (Atypical chemokine receptor 3 CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail) and downstream activation of CXCL12 (chemokine [C-X-C motif] ligand-12) signaling through the CXCR7 (C-X-C chemokine receptor type 7) receptor and ERK1/2 (extracellular signal-regulated kinases 1/2). TPBG silencing by siRNA transfection downregulated CXCL12, CXCR7, and pERK (phospho Thr202/Tyr204 ERK1/2) and reduced the APC migratory and proangiogenic capacities. TPBG forced expression induced opposite effects, which were associated with the formation of CXCR7/CXCR4 (C-X-C chemokine receptor type 4) heterodimers and could be contrasted by CXCL12 and CXCR7 neutralization. In vivo Matrigel plug assays using APCs with or without TPBG silencing evidenced TPBG is essential for angiogenesis. Finally, in immunosuppressed mice with limb ischemia, intramuscular injection of TPBG-overexpressing APCs surpassed naïve APCs in enhancing perfusion recovery and reducing the rate of toe necrosis. Conclusions- TPBG orchestrates the migratory and angiogenic activities of pericytes through the activation of the CXCL12/CXCR7/pERK axis. This novel mechanism could be a relevant target for therapeutic improvement of reparative angiogenesis.


Subject(s)
Cell Movement , Membrane Glycoproteins/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Pericytes/metabolism , Saphenous Vein/metabolism , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Cells, Cultured , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Hindlimb , Humans , Ischemia/genetics , Ischemia/metabolism , Ischemia/physiopathology , Ischemia/surgery , Male , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Nude , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pericytes/transplantation , Phosphorylation , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism
6.
Front Cardiovasc Med ; 5: 155, 2018.
Article in English | MEDLINE | ID: mdl-30460245

ABSTRACT

Cardiovascular calcification is an independent risk factor and an established predictor of adverse cardiovascular events. Despite concomitant factors leading to atherosclerosis and heart valve disease (VHD), the latter has been identified as an independent pathological entity. Calcific aortic valve stenosis is the most common form of VDH resulting of either congenital malformations or senile "degeneration." About 2% of the population over 65 years is affected by aortic valve stenosis which represents a major cause of morbidity and mortality in the elderly. A multifactorial, complex and active heterotopic bone-like formation process, including extracellular matrix remodeling, osteogenesis and angiogenesis, drives heart valve "degeneration" and calcification, finally causing left ventricle outflow obstruction. Surgical heart valve replacement is the current therapeutic option for those patients diagnosed with severe VHD representing more than 20% of all cardiac surgeries nowadays. Tissue Engineering of Heart Valves (TEHV) is emerging as a valuable alternative for definitive treatment of VHD and promises to overcome either the chronic oral anticoagulation or the time-dependent deterioration and reintervention of current mechanical or biological prosthesis, respectively. Among the plethora of approaches and stablished techniques for TEHV, utilization of different cell sources may confer of additional properties, desirable and not, which need to be considered before moving from the bench to the bedside. This review aims to provide a critical appraisal of current knowledge about calcific VHD and to discuss the pros and cons of the main cell sources tested in studies addressing in vitro TEHV.

7.
J Tissue Eng Regen Med ; 11(1): 256-264, 2017 01.
Article in English | MEDLINE | ID: mdl-24899315

ABSTRACT

For a deeper knowledge of phenomena at cell and tissue level, for understanding the role on bimolecular signalling and for the development of new drugs it is important to recreate in vitro environments that mimic the physiological one. Spatial gradients of soluble species guide the cells' morphogenesis, and they range in a three-dimensional (3D) environment. Gradients of mechanical properties, which have a 3D pattern, could lead cell migration and differentiation. In this work, a new 3D Concentration Gradient Maker able to generate 3D concentration gradients of soluble species was developed, which could be used for differential perfusion of scaffolds. The same device can be applied to build hydrogel matrixes with a 3D gradient of mechanical properties. Computational dynamic fluid analysis was used to develop the gradient generator; the validation of the 3D gradient of stiffness was carried out using finite elements analysis and experimental studies. The device and its application could bring improvements in studying phenomena related to cell chemotaxis and mechanotaxis, but also to differentiation in the simultaneous presence of gradients in both soluble chemical species and substrate stiffness. Copyright © 2014 John Wiley & Sons, Ltd.


Subject(s)
Cell Culture Techniques , Hydrogels/chemistry , Acrylamides/chemistry , Animals , Biomimetics , Bioreactors , Cell Differentiation , Cell Movement , Chemotaxis , Computer Simulation , Elastic Modulus , Equipment Design , Humans , Hydrodynamics , Materials Testing , Perfusion , Polyethylene Glycols/chemistry , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...