Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7274, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538762

ABSTRACT

Studies about thymic B cells are scarce in the literature, but it was suggested that they can exert modulatory and regulatory functions on the immune system. Thymic B cells can play some role in regulating the most frequent allergic background worldwide, the atopy induced by the mite Dermatophagoides pteronyssinus (Der p). Here, we aimed to evaluate if the polyclonal IgG repertoire produced by Der p-atopic individuals can influence the homing and cytokine profile of human thymic B derived from non-atopic children aged less than seven days. With this purpose, we produced polyclonal IgG formulations and cultivated human thymocytes in their presence. We also assessed IgG subclasses and the direct interaction of IgG with thymic B cell membranes. Our results could demonstrate that Der p-atopic IgG could not reduce the expression of α4ß7 homing molecule as observed in response to the other IgG formulations and could reduce the frequency of IFN-γ- and IL-9-producing thymic B cells compared to the mock condition. Der p-atopic IgG could also induce thymic IL-10-producing B cells compared to control conditions. The IgG derived from Der p-atopic individuals failed to diminish the population of IL-13-producing thymic B cells, unlike the reduction observed with other IgG formulations when compared to the mock condition. All IgG formulations had similar levels of IgG subclasses and directly interacted with thymic B cell membranes. Finally, we performed experiments using peripheral non-atopic B cells where IgG effects were not observed. In conclusion, our observation demonstrates that IgG induced in allergic individuals can modulate non-atopic thymic B cells, potentially generating thymic B cells prone to allergy development, which seems to not occur in mature B cells.


Subject(s)
Hypersensitivity, Immediate , Hypersensitivity , Animals , Child , Humans , Interleukin-10 , Dermatophagoides pteronyssinus , Interleukin-9 , Interferon-gamma/metabolism , Immunoglobulin G , Phenotype , Antigens, Dermatophagoides , Allergens
3.
Clin Exp Vaccine Res ; 13(1): 1-9, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38362367

ABSTRACT

Since the 1950s decade, it has been suggested that a naturally produced or induced repertoire of immunoglobulin G (IgG) idiotypes may exert some immunoregulatory functions. In the last decades, some more advanced theories have suggested that the repertoire of IgG idiotypes may influence the development or control of some atopic diseases. In atopic dermatitis (AD), some evidence indicated that the IgG repertoire obtained from these patients could effectively mediate regulatory functions on thymic and peripheral CD4+ and CD8+ T cells. Furthermore, some recent clinical trials have corroborated the hypothesis that IgG from AD patients can exert regulatory functions in vivo. Here, we revised some historical aspects that yield current approaches developed in vitro and in vivo to elucidate a recently proposed theory termed "hooks without bait" that can strengthen the broad spectrum of research about evaluating different sets of IgG idiotypes and determine their immunological effects.

4.
Biomed Rep ; 19(6): 95, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37901873

ABSTRACT

Lower levels of peripheral mucosal-associated invariant T (MAIT) cells have been observed in the peripheral blood of patients with severe coronavirus disease 2019 (COVID-19). Following on from previous research into the effect of the IgG repertoire on human lymphocytes, the present study aimed to evaluate if immunoglobulin G (IgG) antibodies obtained from patients with mild or severe COVID-19 contribute to these effects on MAIT cells. Culture experiments were performed using healthy human peripheral blood mononuclear cells (PBMCs) and different repertoires of IgG obtained from patients with COVID-19 as a mild or severe disease and compared with mock, healthy control or therapeutic IgG conditions. The results indicate that the IgG repertoire induced during the development of mild and severe COVID-19 has, per se, the in vitro potential to reduce the frequency of MAIT cells and the production of IFN-γ by the MAIT cell population in PBMCs from healthy individuals. In conclusion, the results of the present study indicate that IgG in patients with severe COVID-19 may participate in the reduction of peripheral MAIT cell frequency and hinder the antiviral activity of these cells.

5.
Front Med (Lausanne) ; 10: 1239706, 2023.
Article in English | MEDLINE | ID: mdl-37711742

ABSTRACT

Human T-lymphotropic virus 1 (HTLV-1) infected individuals remain as asymptomatic carriers (ACs) or can develop the chronic neurological disorder HTLV-1-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP) or the adult T-cell leukemia/lymphoma (ATLL), and the immunological mechanisms involved in this pathologies need to be elucidated. Recently, it has been demonstrated that induced or naturally developed IgG repertoires obtained from different groups of donors, grouped by immune status, can modulate human T and B cell functions. Here we aimed to evaluate if the IgG obtained from HTLV-1-infected ACs, HAM/TSP, and ATLL patients can differentially modulate the production of cytokines by human T and B cells. With this purpose, we cultured PBMCs with IgG purified from ACs, HAM/TSP, or ATLL donors and evaluated the frequency and intracellular cytokine production by flow cytometry. Our results indicate that IgG from HAM/TSP patients could induce an augment of IL-17-producing CD4+ T cells, reduce the frequency of IL-4-producing CD4+ T cells, increase IFN-γ-producing CD8+ T cells, and reduce IL-4-producing CD8+ T cells. IgG from ATLL could reduce the frequency of IL-4-producing CD4+ T cells, similarly to IgG from HAM/TSP /TSP, and could reduce the frequency of IFN-γ-producing γδT cells without influence on IL-17- and IL4-producing γδT and could reduce the frequency of IL-10- producing B cells. Finally, IgG from both HAM/TSP and ATLL patients could reduce the frequency of IFN-γ producing B cells. In conclusion, these results suggest that these preparations are active, partly overlapping in their effects, and able to elicit distinct effects on target populations.

6.
Int J Dermatol ; 62(4): 443-448, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35844012

ABSTRACT

Atopic dermatitis (AD) is a chronic disease related to skin disorders that affect individuals in their childhood and can persist or start in adulthood. Patients affected by this disease commonly show skin lesions on the body surface (mainly on the upper and lower limbs) and allergic rhinitis or asthma crises. Looking at the disease from a molecular perspective, the major cytokines involved in inflammatory skin diseases, not only AD, include IL-4, IL-17, IFN-γ and IL-10. Although they can produce these cytokines and infiltrate the affected epithelia in patients with AD, γδ T cells are still almost unexplored. In this update, we briefly discuss the involvement of IL-4, IL-17, IFN-γ and IL-10 in the pathophysiology of AD and the possible role of γδ T cells during the inflammatory process.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Child , Humans , Cytokines , Dermatitis, Atopic/pathology , Interferon-gamma , Interleukin-10 , Interleukin-17 , Interleukin-4 , T-Lymphocytes/pathology
7.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743308

ABSTRACT

Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.


Subject(s)
Dermatitis, Atopic , MicroRNAs , Adult , CD4-Positive T-Lymphocytes , Epigenesis, Genetic , Humans , Immunoglobulin G/genetics , Interleukins , MicroRNAs/genetics , Interleukin-22
8.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743310

ABSTRACT

γδT cells mature in the human thymus, and mainly produce IL-17A or IFN-γ, but can also produce IL-22 and modulate a variety of immune responses. Here, we aimed to evaluate whether IgG from AD patients (AD IgG) can functionally modulate thymic nonatopic γδT cells. Thymic tissues were obtained from 12 infants who had not had an atopic history. Thymocytes were cultured in mock condition, or in the presence of either AD IgG or therapeutic intravenous IgG (IVIg). Following these treatments, intracellular cytokine production, phenotype, and microRNA expression profiles were investigated. AD IgG could downregulate α4ß7, upregulate CLA, and induce the production of IFN-γ, IL-17, and IL-22 in γδT cells. Although both AD IgG and IVIg could directly interact with γδT cell membranes, AD IgG could reduce γδT cell apoptosis. AD IgG could upregulate nine miRNAs compared to IVIg, and six when compared to the mock condition. In parallel, some miRNAs were downregulated. Target gene prediction and functional analysis indicated that some target genes were enriched in the negative regulation of cellular transcription. This study shows that AD IgG influences the production of IL-17 and IL-22 by intrathymic nonatopic γδT cells, and demonstrates epigenetic implications mediated by miRNAs.


Subject(s)
Dermatitis, Atopic , MicroRNAs , Dermatitis, Atopic/metabolism , Epigenesis, Genetic , Humans , Immunoglobulins/immunology , Immunoglobulins, Intravenous , Infant, Newborn , Interleukin-17 , Interleukins , MicroRNAs/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland , Interleukin-22
9.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205753

ABSTRACT

The mechanisms through which maternal immunization can modulate offspring thymic maturation of lymphocytes are not fully understood. Here, we aimed to evaluate whether maternal OVA-immunization can inhibit the maturation of IL-17-producing γδT cells in offspring thymus, and if this mechanism has epigenetic implications mediated by microRNAs (miRNAs) expression. Wild-type (WT) C57BL/6 females were immunized with OVA in Alum or Alum alone and were mated with normal WT males. Evaluating their offspring thymus at 3 or 20 days old (d.o.), we observed that maternal OVA immunization could inhibit the thymic frequency of offspring CD27- and IL-17+ γδT cells at the neonatal and until 20 days old. Furthermore, we evaluated the expression of function-related γ and δ variable γδTCR chains (Vγ1, Vγ2, Vγ3, Vδ4, and Vδ6.3), observing that maternal OVA-immunization inhibits Vγ2 chains expression. The small RNAs (sRNAs), particularly miRNAs, and messenger RNAs (mRNA) expression profiles by pools of thymus tissue samples (from 9 to 11 mice) from offspring OVA-immunized or Alum-immunized mothers were analyzed via Illumina sequencing platform and bioinformatics approaches. Using a fold change >4, our results showed that seven miRNAs (mmu-miR-126a-3p, 101a-3p, 744-3p,142-5p, 15a-5p, 532-5p, and 98-5p) were differentially expressed between both groups. Ten target genes were predicted to interact with the seven selected miRNAs. There were no enriched categories of gene ontology functional annotation and pathway enrichment analysis for the target genes. Interestingly, four of the identified miRNAs (mmu-miR-15a, mmu-miR-101 mmu-miR-126, and mmu-miR-142) are related to IL-17 production. Our data is of significance because we demonstrate that maternal immunization can modulate offspring thymic maturation of IL-17-producing γδT cells possibly by an epigenetic mechanism mediated by miRNAs.


Subject(s)
Hypersensitivity/etiology , Immunization , Intraepithelial Lymphocytes , Maternal Exposure , Thymus Gland/immunology , Animals , Female , Interleukin-17/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism
10.
Front Allergy ; 2: 650235, 2021.
Article in English | MEDLINE | ID: mdl-35387031

ABSTRACT

Innate lymphoid cells (ILCs) are classified into distinct subsets termed ILC1, ILC2, and ILC3 cells. The existing literature lacks evidence identifying ILCs and their subsets in the human thymus but already demonstrates that they can exert several functions in regulating immune responses. Furthermore, it was already described that IgG's repertoires could modulate lymphocytes' maturation in the human thymus. Here we aimed to identify ILCs subsets in the human thymus and provide insight into the possible modulatory effect of purified IgG on these cells. Thymic tissues were obtained from 12 infants without an allergic background (non-atopic), and a literature-based peripheral ILCs staining protocol was used. Purified IgG was obtained from non-atopic individuals (n-At), atopic individuals reactive to allergens non-related to dust mites (nr-At), and atopic individuals reactive to the mite Dermatophagoides pteronyssinus (Derp-At). As with all tissues in which they have already been detected, thymic ILCs are rare, but we could detect viable ILCs in all tested tissues, which did not occur with the ILC1 subset. ILC2 and ILC3 NKp44+ subsets could be detected in all evaluated thymus, but ILC3 NKp44- subset could not. Next, we observed that Derp-At IgG could induce the expression of ILC2 phenotype, higher levels of IL-13, and lower levels of IL-4 when compared to IgG purified from non-atopic or non-related atopic (atopic to allergens excluding dust mites) individuals. These results contribute to the elucidation of human thymic ILCs and corroborate emerging evidence about IgG's premature effect on allergy development-related human lymphocytes' modulation.

11.
Eur Cytokine Netw ; 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33270019

ABSTRACT

The mechanisms through which maternal immunization can modulate offspring thymic maturation of lymphocytes are not fully understood. Here, we aimed to evaluate whether maternal OVA-immunization can inhibit the maturation of Th17 cells on offspring thymus. C57BL/6 females were immunized with OVA in Alum or Alum alone and mated with normal WT males. Offspring thymus was evaluated at three or 20 days of age. The demonstration that maternal OVA-immunization can inhibit offspring allergy development validated our experimental protocol. First, we observed that maternal OVA-immunization can inhibit the expression of R or γT and IL-17 molecules on immature T cells (CD4+CD8+) and TCD4 cells (CD4+CD8-) without interference on TCD8 cells (CD4-CD8+) on three-day-old offspring. A very similar effect could be observed on 20-day-old offspring. Additionally, a Th2 skewed profile could be found on the spleen of immunized pups from OVA-immunized mothers, but no influence was detected on offspring thymic Th1/Th2 profiles. Together, these data demonstrate that maternal immunization with an allergen can modulate offspring thymic maturation of Th17 cells without influencing Th1/Th2 patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...