Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37888224

ABSTRACT

Cryptococcosis is a systemic mycosis that causes pneumonia and meningoencephalitis. Strongyloidiasis is a chronic gastrointestinal infection caused by parasites of the genus Strongyloides. Cryptococcosis and strongyloidiasis affect the lungs and are more prevalent in the same world regions, i.e., Africa and tropical countries such as Brazil. It is undeniable that those coincidences may lead to the occurrence of coinfections. However, there are no studies focused on the interaction between Cryptococcus spp. and Strongyloides spp. In this work, we aimed to investigate the interaction between Strongyloides venezuelensis (Sv) and Cryptococcus gattii (Cg) in a murine coinfection model. Murine macrophage exposure to Sv antigens reduced their ability to engulf Cg and produce reactive oxygen species, increasing the ability of fungal growth intracellularly. We then infected mice with both pathogens. Sv infection skewed the host's response to fungal infection, increasing lethality in a murine coinfection model. In addition to increased NO levels and arginase activity, coinfected mice presented a classic Th2 anti-Sv response: eosinophilia, higher levels of alternate activated macrophages (M2), increased concentrations of CCL24 and IL-4, and lower levels of IL-1ß. This milieu favored fungal growth in the lungs with prominent translocation to the brain, increasing the host's tissue damage. In conclusion, our data shows that primary Sv infection promotes Th2 bias of the pulmonary response to Cg-infection and worsens its pathological outcomes.

2.
Immunology ; 167(3): 428-442, 2022 11.
Article in English | MEDLINE | ID: mdl-35831251

ABSTRACT

Intestinal ischemia and reperfusion (I/R) is accompanied by an exacerbated inflammatory response characterized by deposition of IgG, release of inflammatory mediators, and intense neutrophil influx in the small intestine, resulting in severe tissue injury and death. We hypothesized that Fcγ RIIb activation by deposited IgG could inhibit tissue damage during I/R. Our results showed that I/R induction led to the deposition of IgG in intestinal tissue during the reperfusion phase. Death upon I/R occurred earlier and was more frequent in Fcγ RIIb-/- than WT mice. The higher lethality rate was associated with greater tissue injury and bacterial translocation to other organs. Fcγ RIIb-/- mice presented changes in the amount and repertoire of circulating IgG, leading to increased IgG deposition in intestinal tissue upon reperfusion in these mice. Depletion of intestinal microbiota prevented antibody deposition and tissue damage in Fcγ RIIb-/- mice submitted to I/R. We also observed increased production of ROS on neutrophils harvested from the intestines of Fcγ RIIb-/- mice submitted to I/R. In contrast, Fcγ RIII-/- mice presented reduced tissue damage and neutrophil influx after reperfusion injury, a phenotype reversed by Fcγ RIIb blockade. In addition, we observed reduced IFN-ß expression in the intestines of Fcγ RIII-/- mice after I/R, a phenotype that was also reverted by blocking Fcγ RIIb. IFNAR-/- mice submitted to I/R presented reduced lethality and TNF release. Altogether our results demonstrate that antibody deposition triggers Fcγ RIIb to control IFN-ß and IFNAR activation and subsequent TNF release, tailoring tissue damage, and death induced by reperfusion injury.


Subject(s)
Reperfusion Injury , Animals , Immunoglobulin G , Inflammation Mediators , Intestines , Mice , Reactive Oxygen Species , Reperfusion Injury/microbiology
3.
Immunol Invest ; 51(6): 1756-1771, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35152824

ABSTRACT

Cancer chemotherapy and radiotherapy may result in mucositis characterized by stem cell damage and inflammation in the gastrointestinal tract. The molecular mechanisms underlying this pathology remain unknown. Based on the assumption that mitochondrial CPG-DNA (mtDNA) released and sensed by TLR9 could underlie mucositis pathology, we analyzed the mtDNA levels in sera as well as inflammatory and disease parameters in the small intestine from wild-type (WT) and TLR9-deficient mice (TLR9-/-) in an experimental model of intestinal mucositis induced by irinotecan. Additionally, we verified the ability of WT and TLR9-/- macrophages to respond to CpG-DNA in vitro. WT mice injected with irinotecan presented a progressive increase in mtDNA in the serum along with increased hematocrit, shortening of small intestine length, reduction of intestinal villus:crypt ratio and increased influx of neutrophils, which were followed by higher expression of Nlrp3 and Casp1 mRNA and increased IL-1ß levels in the ileum when compared to vehicle-injected mice. TLR9-deficient mice were protected in all these parameters when compared to WT mice. Furthermore, TLR9 was required for the production of IL-1ß and NO after macrophage stimulation with CpG-DNA. Overall, our findings show that the amount of circulating free CpG-DNA is increased upon chemotherapy and that TLR9 activation is important for NLRP3 inflammasome transcription and further IL-1ß release, playing a central role in the development of irinotecan-induced intestinal mucositis. We suggest that TLR9 antagonism may be a new therapeutic strategy for limiting irinotecan-induced intestinal inflammation.


Subject(s)
Mucositis , Animals , DNA, Mitochondrial/genetics , Inflammation/metabolism , Irinotecan/toxicity , Ligands , Mice , Mice, Knockout , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
4.
Cells ; 10(7)2021 07 17.
Article in English | MEDLINE | ID: mdl-34359982

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic disease caused by Paracoccidioides spp. PCM is endemic in Latin America and most cases are registered in Brazil. This mycosis affects mainly the lungs, but can also spread to other tissues and organs, including the liver. Several approaches have been investigated to improve treatment effectiveness and protection against the disease. Extracellular vesicles (EVs) are good antigen delivery vehicles. The present work aims to investigate the use of EVs derived from Paracoccidioides brasiliensis as an immunization tool in a murine model of PCM. For this, male C57BL/6 were immunized with two doses of EVs plus adjuvant and then infected with P. brasiliensis. EV immunization induced IgM and IgG in vivo and cytokine production by splenocytes ex vivo. Further, immunization with EVs had a positive effect on mice infected with P. brasiliensis, as it induced activated T lymphocytes and NKT cell mobilization to the infected lungs, improved production of proinflammatory cytokines and the histopathological profile, and reduced fungal burden. Therefore, the present study shows a new role for P. brasiliensis EVs in the presence of adjuvant as modulators of the host immune system, suggesting their utility as immunizing agents.


Subject(s)
Antigens, Fungal/immunology , Extracellular Vesicles/microbiology , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Paracoccidioidomycosis/microbiology , Protective Agents/pharmacology , Animals , Antibodies, Fungal/immunology , Cell Movement , Cytokines/metabolism , Extracellular Vesicles/drug effects , Immunization , Immunologic Memory , Lung/microbiology , Lung/pathology , Lymphocyte Activation/immunology , Male , Mice, Inbred C57BL , Natural Killer T-Cells/immunology , Reference Standards
5.
Eur J Pharmacol ; 898: 173984, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33647256

ABSTRACT

Intestinal ischemia is a vascular emergency that arises when blood flow to the intestine is compromised. Reperfusion is necessary to restore intestinal function but might lead to local and systemic inflammatory responses and bacterial translocation, with consequent multiple organ dysfunction syndrome (MODS). During reperfusion occurs production of reactive oxygen species. These species contribute to intestinal injury through direct toxicity or activation of inflammatory pathways. Fullerol is a nanacomposite which has been shown to act as reactive oxygen species and reactive nitrogen species (RNS) scavengers. Thus, our aim was to evaluate whether Fullerol confer anti-inflammatory activity during intestinal ischemia and reperfusion (IIR). Intestinal ischemia was induced by total occlusion of the superior mesenteric artery. Groups were treated with vehicle or Fullerol 10 min before reperfusion. Mice were euthanized after 6 h of reperfusion, and small intestines were collected for evaluation of plasma extravasation, leukocyte influx, cytokine production and histological damage. Bacterial translocation to the peritoneal cavity and reactive oxygen and nitrogen species production by lamina propria cells were also evaluated. Our results showed that treatment with Fullerol inhibited bacterial translocation to the peritoneal cavity, delayed and decreased the lethality rates and diminished neutrophil influx and intestinal injury induced by IIR. Reduced severity of reperfusion injury in Fullerol-treated mice was associated with blunted reactive oxygen and nitrogen species production in leukocytes isolated from gut lamina propria and decreased production of pro-inflammatory mediators. Thus, the present study shows that Fullerol is a potential therapy to treat inflammatory bowel disorders associated with bacterial translocation, such as IIR.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fullerenes/pharmacology , Intestines/blood supply , Intestines/drug effects , Mesenteric Ischemia/drug therapy , Nanocomposites , Reperfusion Injury/prevention & control , Animals , Bacterial Translocation/drug effects , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Intestines/microbiology , Intestines/pathology , Male , Mesenteric Ischemia/metabolism , Mesenteric Ischemia/microbiology , Mesenteric Ischemia/pathology , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Oxidative Stress/drug effects , Permeability , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/microbiology , Reperfusion Injury/pathology , Severity of Illness Index
6.
Article in English | MEDLINE | ID: mdl-29463546

ABSTRACT

The clinical pathogen Klebsiella pneumoniae is a relevant cause of nosocomial infections, and resistance to current treatment with carbapenem antibiotics is becoming a significant problem. Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) used for controlling plasma cholesterol levels. There is clinical evidence showing other effects of statins, including decrease of lung inflammation. In the current study, we show that pretreatment with atorvastatin markedly attenuated lung injury, which was correlated with a reduction in the cellular influx into the alveolar space and lungs and downmodulation of the production of proinflammatory mediators in the initial phase of infection in C57BL/6 mice with K. pneumoniae However, atorvastatin did not alter the number of bacteria in the lungs and blood of infected mice, despite decreasing local inflammatory response. Interestingly, mice that received combined treatment with atorvastatin and imipenem displayed better survival than mice treated with vehicle, atorvastatin, or imipenem alone. These findings suggest that atorvastatin could be an adjuvant in host-directed therapies for multidrug-resistant K. pneumoniae, based on its powerful pleiotropic immunomodulatory effects. Together with antimicrobial approaches, combination therapy with anti-inflammatory compounds could improve the efficiency of therapy during acute lung infections.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Atorvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Imipenem/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Pneumonia, Bacterial/drug therapy , Animals , Bacterial Load/drug effects , Chemokines/analysis , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Drug Resistance, Multiple, Bacterial , Drug Therapy, Combination , Female , Inflammation/drug therapy , Macrophages/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Phagocytosis/drug effects , Phagocytosis/immunology , Pneumonia, Bacterial/microbiology
7.
Curr Neurovasc Res ; 13(1): 4-9, 2016.
Article in English | MEDLINE | ID: mdl-26500102

ABSTRACT

Acetylcholine (ACh) is the main mediator associated with the anti-inflammatory cholinergic pathway. ACh plays an inhibitory role in several inflammatory conditions. Sepsis is a severe clinical syndrome characterized by bacterial dissemination and overproduction of inflammatory mediators. The aim of the current study was to investigate the participation of endogenous ACh in the modulation of inflammatory response induced by a model of polymicrobial sepsis. Wild type (WT) and vesicular acetylcholine transporter knockdown (VAChT(KD)) mice were exposed to cecal ligation and perforation- induced sepsis. Levels of Tumor Necrosis Factor Alpha (TNF-α) and bacterial growth in peritoneal cavity and serum, and neutrophil recruitment into peritoneal cavity were assessed. The concentration of TNF-α in both compartments was higher in VAChT(KD) in comparison with WT mice. VAChT(KD) mice presented elevated burden of bacteria in peritoneum and blood, and impairment of neutrophil migration to peritoneal cavity. This phenotype was reversed by treatment with nicotine salt. These findings suggest that endogenous ACh plays a major role in the control of sepsis-associated inflammatory response.


Subject(s)
Acetylcholine/metabolism , Sepsis/immunology , Sepsis/microbiology , Analysis of Variance , Animals , Cell Movement/drug effects , Chemokine CXCL12/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/genetics , Ligation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutrophils/drug effects , Neutrophils/microbiology , Neutrophils/physiology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Peritoneal Cavity/microbiology , Sepsis/drug therapy , Sepsis/mortality , Tumor Necrosis Factor-alpha/metabolism , Typhlitis/etiology , Vesicular Acetylcholine Transport Proteins/deficiency , Vesicular Acetylcholine Transport Proteins/genetics
8.
PLoS One ; 10(7): e0132336, 2015.
Article in English | MEDLINE | ID: mdl-26147469

ABSTRACT

INTRODUCTION: Toll-like receptors (TLRs) play an important role in the recognition of microbial products and in host defense against infection. However, the massive release of inflammatory mediators into the bloodstream following TLR activation following sepsis is thought to contribute to disease pathogenesis. METHODS: Here, we evaluated the effects of preventive or therapeutic administration of monoclonal antibodies (mAbs) targeting either TLR2 or TLR4 in a model of severe polymicrobial sepsis induced by cecal ligation and puncture in mice. RESULTS: Pre-treatment with anti-TLR2 or anti-TLR4 mAb alone showed significant protection from sepsis-associated death. Protective effects were observed even when the administration of either anti-TLR2 or anti-TLR4 alone was delayed (i.e., 3 h after sepsis induction). Delayed administration of either mAb in combination with antibiotics resulted in additive protection. CONCLUSION: Although attempts to translate preclinical findings to clinical sepsis have failed so far, our preclinical experiments strongly suggest that there is a sufficient therapeutic window within which patients with ongoing sepsis could benefit from combined antibiotic plus anti-TLR2 or anti-TLR4 mAb treatment.


Subject(s)
Antibodies, Monoclonal/pharmacology , Sepsis/prevention & control , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Animals , Antibodies, Monoclonal/immunology , Disease Models, Animal , Mice , Sepsis/immunology , Sepsis/microbiology , Sepsis/pathology
9.
J Psychiatr Res ; 47(12): 1949-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24075327

ABSTRACT

Bipolar disorder (BD) is a severe psychiatric disorder of complex physiopathology that has been associated with a pro-inflammatory state. The aim of the present study was to investigate intracellular pathways associated with inflammatory signaling, assessing the phosphorylation levels of transcription factor nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPKs) in peripheral blood mononuclear cells of euthymic BD patients and healthy controls. Fifteen BD euthymic type I patients, and 12 healthy controls matched by age and gender were enrolled in this study. All subjects were assessed by the Mini-International Neuropsychiatry Interview and the patients also by the Young Mania Rating Scale and the Hamilton Depression Rating Scale. Phosphorylation levels of p65 NF-κB subunit, and MAPK ERK1/2, and p38 were assessed by Western blot and flow cytometry. Plasma cytokines (IL-2, IL-4, IL6, IL-10, IFN-γ, TNF-α, and IL-17A) were measured using cytometric bead arrays. Western blot and flow cytometry analyses showed increased phosphorylation levels of p65 NF-κB subunit, and MAPKs ERK1/2, and p38 in BD patients in euthymia in comparison with controls. BD patients presented increased pro-inflammatory cytokines levels in comparison with controls, and TNF-α correlated with the levels of phosphorylated p65 NF-κB. The present study found increased activation of MAPK and NF-κB pathways in BD patients, which is in line with a pro-inflammatory status.


Subject(s)
Bipolar Disorder/blood , Leukocytes, Mononuclear/metabolism , Mitogen-Activated Protein Kinases/metabolism , Adult , Case-Control Studies , Cytokines/blood , Female , Flow Cytometry , Humans , Male , Middle Aged , Phosphorylation , Psychiatric Status Rating Scales , eIF-2 Kinase/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
10.
PLoS Negl Trop Dis ; 7(8): e2390, 2013.
Article in English | MEDLINE | ID: mdl-23991239

ABSTRACT

Leukotrienes (LTs) produced from arachidonic acid by the action of 5-lipoxygenase (5-LO) are classical mediators of inflammatory responses. However, studies published in the literature regarding these mediators are contradictory and it remains uncertain whether these lipid mediators play a role in host defense against the fungal pathogen Paracoccidioides brasiliensis. To determine the involvement of LTs in the host response to pulmonary infection, wild-type and LT-deficient mice by targeted disruption of the 5-lipoxygenase gene (knockout mice) were studied following intratracheal challenge with P. brasiliensis yeasts. The results showed that infection is uniformly fatal in 5-LO-deficient mice and the mechanisms that account for this phenotype are an exacerbated lung injury and higher fungal pulmonary burden. Genetic ablation or pharmacological inhibition of LTs resulted in lower phagocytosis and fungicidal activity of macrophages in vitro, suggesting that deficiency in fungal clearance seems to be secondary to the absence of activation in 5-LO(-/-) macrophages. Exogenous LTB4 restored phagocytosis and fungicidal activity of 5-LO(-/-) macrophages. Moreover, P. brasiliensis killing promoted by LTB4 was dependent on nitric oxide (NO) production by macrophages. Taken together, these results reveal a fundamental role for 5-LO-derived LTB4 in the protective response to P. brasiliensis infection and identify relevant mechanisms for the control of fungal infection during the early stages of the host immune response.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Leukotriene B4/metabolism , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Animals , Colony Count, Microbial , Disease Models, Animal , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Knockout , Survival Analysis
11.
Am J Pathol ; 182(6): 1950-61, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23567637

ABSTRACT

Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue.


Subject(s)
Dengue/immunology , Inflammation/virology , Animals , Cytokines/immunology , Dengue/complications , Dengue/physiopathology , Dengue/prevention & control , Disease Models, Animal , Humans , Immunity, Innate , Mice
12.
Brain Res ; 1385: 298-306, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21338585

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a condition induced in some susceptible species to the study of multiple sclerosis (MS). The platelet activating factor (PAF) is an important mediator of immune responses and seems to be involved in MS. However, the participation of PAF in EAE and MS remains controversial. Thus, in this study, we aimed to evaluate the role of PAF receptor in the pathogenesis of EAE. EAE was induced using an emulsion containing MOG(35-55). EAE-induced PAF receptor knock out (PAFR(-/-)) mice presented milder disease when compared to C57BL/6 wild type (WT) animals. PAFR(-/-) animals had lower inflammatory infiltrates in central nervous system (CNS) tissue when compared to WT mice. However, intravital microscopy in cerebral microvasculature revealed similar levels of rolling and adhering leukocytes in both WT and PAFR(-/-) mice. Interleukine (IL)-17 and chemokines C-C motif legends (CCL)2 and CCL5 were significantly lower in PAFR(-/-) mice when compared to WT mice. Brain infiltrating cluster of differentiation (CD)4(+) leukocytes and IL-17(+) leukocytes was diminished in PAFR(-/-) when compared to WT mice. Taken together, our results suggest that PAF receptor is important in the induction and development of EAE, although it has no influence in rolling and adhesion steps of cell recruitment. The absence of PAF receptor results in milder disease by altering the type of inflammatory mediators and cells that are present in CNS tissue.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation Mediators/physiology , Leukocytes/metabolism , Leukocytes/pathology , Platelet Membrane Glycoproteins/deficiency , Receptors, G-Protein-Coupled/deficiency , Animals , Cell Adhesion/immunology , Cell Differentiation/physiology , Central Nervous System/metabolism , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...