Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biomedicines ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790902

ABSTRACT

Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by blood ACE levels) is associated with an increased risk of cardiovascular diseases. Elevated blood ACE is also a marker for granulomatous diseases. Decreased blood ACE activity is becoming a new risk factor for Alzheimer's disease. We applied our novel approach-ACE phenotyping-to characterize pairs of tissues (lung, heart, lymph nodes) and serum ACE in 50 patients. ACE phenotyping includes (1) measurement of ACE activity with two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of these substrates (ZPHL/HHL ratio); (3) determination of ACE immunoreactive protein levels using mAbs to ACE; and (4) ACE conformation with a set of mAbs to ACE. The ACE phenotyping approach in screening format with special attention to outliers, combined with analysis of sequencing data, allowed us to identify patient with a unique ACE phenotype related to decreased ability of inhibition of ACE activity by albumin, likely due to competition with high CCL18 in this patient for binding to ACE. We also confirmed recently discovered gender differences in sialylation of some glycosylation sites of ACE. ACE phenotyping is a promising new approach for the identification of ACE phenotype outliers with potential clinical significance, making it useful for screening in a personalized medicine approach.

2.
Front Immunol ; 15: 1329236, 2024.
Article in English | MEDLINE | ID: mdl-38449857

ABSTRACT

Background: SARS-CoV-2 infection during pregnancy increases the risk of severe obstetrical complications. Detailed evaluation of COVID-19-associated coagulopathy in a pregnancy with stillbirth hasn't been described so far. Besides knowledge gaps in the pathomechanism leading to stillbirth in COVID-19 pregnancies, currently, no prognostic biomarker is available to identify pregnant patients who are at imminent risk of COVID-19-associated maternal and fetal complications, requiring immediate medical attention. Case: Here we report the case of a 28-year-old SARS-CoV-2 infected pregnant patient, admitted to our hospital at 28 weeks of gestation with intrauterine fetal loss. The presence of SARS-CoV-2 placentitis was confirmed by immunohistological evaluation of the placenta. She had only mild upper respiratory symptoms and her vital signs were within reference throughout labor and postpartum. The stillborn infant was delivered per vias naturales. Fibrinogen concentrate was administered before and after labor due to markedly decreased fibrinogen levels (1.49 g/l) at admission and excessive bleeding during and after delivery. Although coagulation screening tests were not alarming at admission, the balance of hemostasis was strikingly distorted in the patient. As compared to healthy age- and gestational age-matched pregnant controls, increased D-dimer, low FVIII activity, low FXIII level, marked hypocoagulability as demonstrated by the thrombin generation assay, together with shortened clot lysis and decreased levels of fibrinolytic proteins were observed. These alterations most likely have contributed to the increased bleeding observed during labor and in the early postpartum period. Interestingly, at the same time, only moderately altered inflammatory cytokine levels were found at admission. Serum ACE2 activity did not differ in the patient from that of age- and gestational age-matched healthy controls, suggesting that despite previous speculations in the literature, ACE2 may not be used as a potential biomarker for the prediction of COVID-19 placentitis and threatening fetal loss in SARS-CoV-2-infected pregnancies. Conclusions: Although based on this case report no prognostic biomarker could be identified for use in pregnant patients with imminent risk of fetal loss associated with COVID-19 placentitis, the above-described hemostasis alterations warrant awareness of postpartum hemorrhagic complications and could be helpful to identify patients requiring intensified medical attention.


Subject(s)
COVID-19 , Chorioamnionitis , Humans , Female , Infant , Pregnancy , Adult , Fibrinolysis , SARS-CoV-2 , Cytokines , Angiotensin-Converting Enzyme 2 , Pregnant Women , Stillbirth , COVID-19/complications , Biomarkers , Fibrinogen
3.
Microorganisms ; 12(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276214

ABSTRACT

Severe SARS-CoV-2 elicits a hyper-inflammatory response that results in intravascular inflammation with endothelial injury, which contributes to increased mortality in COVID-19. To predict the outcome of severe SARS-CoV-2 infection, we analyzed the baseline level of different biomarkers of vascular disorders in COVID-19 subjects upon intensive care unit (ICU) admission and prior to any vaccination. A total of 70 severe COVID-19 patients (37 survivors and 33 non-survivors) were included with 16 age- and sex-matched controls. Vascular dysfunction was monitored via soluble VCAM-1, E-selectin, ACE2 and Lp-PLA2, while abnormal platelet activation was evaluated by soluble P-selectin and CD40L in parallel. These results were correlated with routine laboratory parameters and disease outcomes. Among these parameters, VCAM-1 and ACE2 showed significantly higher serum levels in COVID-19 patients with early death vs. convalescent subjects. VCAM-1 was significantly correlated with the Horowitz index (r = 0.3115) and IL-6 (r = 0.4599), while ACE2 was related to E-selectin (r = 0.4143) and CD40L (r = 0.2948). Lp-PLA2 was altered in none of these COVID-19 subcohorts and showed no relationship with the other parameters. Finally, the pre-treatment level of VCAM-1 (≥1420 ng/mL) and ACE2 activity (≥45.2 µU/mL) predicted a larger risk for mortality (Log-Rank p = 0.0031 and p = 0.0117, respectively). Vascular dysfunction with endothelial cell activation is linked to lethal COVID-19, and highly elevated soluble VCAM-1 and ACE2 at admission to ICU may predict unfavorable outcomes.

4.
Clin Chem Lab Med ; 62(7): 1393-1401, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38205624

ABSTRACT

OBJECTIVES: Serum angiotensin-converting enzyme (ACE) is the only biomarker routinely used in the laboratory diagnostics of sarcoidosis, and ACE inhibitor (ACEi) drugs are among the most prescribed drugs worldwide. Taking ACEi can mislead medical teams by lowering ACE activity, delaying diagnosis and giving a false impression of disease activity of sarcoidosis. We aimed to develop a simple method to detect the presence of ACEi drugs in samples, to investigate the ACEi medication-caused interference and consequences in a retrospective study. METHODS: ACE activity and the level of ACE inhibition were determined for 1823 patients with suspected sarcoidosis. These values were compared with the therapeutic information at the first and follow-up visits. RESULTS: A total of 302 patients had biochemical evidence of an ACEi drug effect during diagnostic ACE activity testing. In their case, ACE activity was significantly lower (median(IQR): 4.41 U/L(2.93-6.72)) than in patients not taking ACEi (11.32 U/L(8.79-13.92), p<0.01). In 62 sarcoidosis patients, the ACEi reduced ACE activity to the reference range or below. Only in 40 % of the cases was the medication list recorded in the outpatient chart and only in 3 cases was low ACE activity associated with ACEi use. 67 % of the repeated ACE activity measurements were also performed during ACEi therapy. CONCLUSIONS: Our study revealed that the use of ACEi is common in patients with suspected sarcoidosis. The ACE activity lowering effect of ACEi drugs may escape the attention of medical teams which can lead to diagnostic errors and unnecessary tests. Nevertheless, these pitfalls can be avoided by using a method suggested by our team.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Peptidyl-Dipeptidase A , Sarcoidosis , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Sarcoidosis/drug therapy , Sarcoidosis/diagnosis , Sarcoidosis/blood , Male , Female , Middle Aged , Retrospective Studies , Peptidyl-Dipeptidase A/blood , Adult , Biomarkers/blood
5.
Geroscience ; 46(2): 1561-1574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37656328

ABSTRACT

Autoantibodies targeting the lung tissue were identified in severe COVID-19 patients in this retrospective study. Fifty-three percent of 104 patients developed anti-pulmonary antibodies, the majority of which were IgM class, suggesting that they developed upon infection with SARS-CoV-2. Anti-pulmonary antibodies correlated with worse pulmonary function and a higher risk of multiorgan failure that was further aggravated if 3 or more autoantibody clones were simultaneously present (multi-producers). Multi-producer patients were older than the patients with less or no autoantibodies. One of the identified autoantibodies (targeting a pulmonary protein of ~ 50 kDa) associated with worse clinical outcomes, including mortality. In summary, severe COVID-19 is associated with the development of lung-specific autoantibodies, which may worsen the clinical outcome. Tissue proteome-wide tests, such as the ones applied here, can be used to detect autoimmunity in the post-COVID state to identify the cause of symptoms and to reveal a new target for treatment.


Subject(s)
Autoantibodies , COVID-19 , Humans , Retrospective Studies , SARS-CoV-2 , Patient Acuity , Lung
6.
BMC Pulm Med ; 23(1): 512, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104063

ABSTRACT

BACKGROUND: We retrospectively analyzed serum level of human epididymis protein 4 (HE4) as a pulmonary inflammatory biomarker in patients with COVID-19 pneumonia in association with disease severity and outcome. METHODS: Ninety-nine (40 critically ill, 40 severe and 19 mild) COVID-19 patients and as controls 25 age- and sex-matched non-COVID-19 bacterial sepsis subjects were included. Serum HE4 was measured by an immunoassay (Architect® i1000SR, Abbott) in the baseline samples of all study participants obtained at intensive care unit (ICU) admission or during outpatient clinic visit and follow-up sera were available in case of 30 COVID-19 subjects with life-threating conditions. Associations were studied between serum HE4, routinely available laboratory parameters, clinical characteristics, and disease progression. RESULTS: Baseline HE4 level was significantly higher (P < 0.0001) in critically ill (524.7 [300.1-1153.0] pmol/L) than severe COVID-19 subjects (157.4 [85.2-336.9] pmol/L) and in mild SARS-CoV-2 infection (46.7 [39.1-57.2] pmol/L). Similarly increased HE4 concentrations were found in bacterial sepsis (1118.0 [418.3-1953.0] pmol/L, P = 0.056) compared to critically ill COVID-19 individuals. Serum HE4 levels significantly correlated with age, SOFA-score, inflammation-dependent biomarkers, and the degree of lung manifestation evaluated by chest CT examination in ICU COVID-19 individuals. Based on ROC-AUC curve analysis, baseline HE4 independently indicated the severity of COVID-19 with an AUC value of 0.816 (95% CI [0.723-0.908]; P < 0.0001), while binary logistic regression test found HE4 as an independent prognostic parameter for death (OR: 10.618 [2.331-48.354]; P = 0.002). Furthermore, COVID-19 non-survivors showed much higher baseline HE4 levels without a substantial change under treatment vs. survivors (P < 0.0001). Finally, pre-treatment HE4 level of ≥ 331.7 pmol/L effectively predicted a larger risk for mortality (Log-Rank P < 0.0001) due to severe COVID-19 pneumonia. CONCLUSION: Elevated serum HE4 level at ICU admission highly correlates with COVID-19 severity and predicts disease outcome.


Subject(s)
COVID-19 , Pneumonia , Sepsis , Humans , Biomarkers , Critical Illness , Patient Acuity , Prognosis , Retrospective Studies , SARS-CoV-2
7.
Biomedicines ; 11(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38137544

ABSTRACT

Angiotensin-converting enzyme (ACE) inhibitors are the primarily chosen drugs to treat various cardiovascular diseases, such as hypertension. Although the most recent guidelines do not differentiate among the various ACE inhibitory drugs, there are substantial pharmacological differences. GOAL: Here, we tested if lipophilicity affects the efficacy of ACE inhibitory drugs when used as the first therapy in newly identified hypertensives in a prospective study. METHODS: We tested the differences in the cardiovascular efficacy of the hydrophilic lisinopril (8.3 ± 3.0 mg/day) and the lipophilic enalapril (5.5 ± 2.3 mg/day) (n = 59 patients). The cardiovascular parameters were determined using sonography (flow-mediated dilation (FMD) in the brachial artery, intima-media thickness of the carotid artery), 24 h ambulatory blood pressure monitoring (peripheral arterial blood pressure), and arteriography (aortic blood pressure, augmentation index, and pulse wave velocity) before and after the initiation of ACE inhibitor therapy. RESULTS: Both enalapril and lisinopril decreased blood pressure. However, lisinopril failed to improve arterial endothelial function (lack of effects on FMD) when compared to enalapril. Enalapril-mediated improved arterial endothelial function (FMD) positively correlated with its blood-pressure-lowering effect. In contrast, there was no correlation between the decrease in systolic blood pressure and FMD in the case of lisinopril treatment. CONCLUSION: The blood-pressure-lowering effects of ACE inhibitor drugs are independent of their lipophilicity. In contrast, the effects of ACE inhibition on arterial endothelial function are associated with lipophilicity: the hydrophilic lisinopril was unable to improve, while the lipophilic enalapril significantly improved endothelial function. Moreover, the effects on blood pressure and endothelial function did not correlate in lisinopril-treated patients, suggesting divergent mechanisms in the regulation of blood pressure and endothelial function upon ACE inhibitory treatment.

8.
Front Immunol ; 14: 1257072, 2023.
Article in English | MEDLINE | ID: mdl-37965328

ABSTRACT

Background: Inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC), are associated with higher thrombotic risk and enhanced thrombin generation (TG) in adults. Despite encouraging data reporting vaccine safety and low IBD flare rates in adults with IBD, vaccine hesitancy was demonstrated to be high in families of children with IBD. We aimed to find out whether TG is increased in children with IBD as compared to healthy controls and whether TG parameters show significant changes following SARS-CoV-2 mRNA vaccination. Patients and methods: In this observational case-control study, 38 children with IBD (CD:18, UC: 20) aged 12-18 years and 62 healthy age-and sex-matched children were enrolled. Blood was collected before the first dose and 2-6 weeks after the second dose of BNT162b2 (Pfizer-BioNTech) mRNA vaccine dose. Blood cell counts, fibrinogen, inflammatory markers (hsCRP, ferritin), anti-SARS-CoV-2 antibody levels were investigated, TG assay was carried-out using platelet-poor plasma. Detailed clinical parameters including disease activity scores (PUCAI, PCDAI) were registered pre-and post- vaccination. A guided questionnaire was used to collect data on adverse reactions (AEs) post- vaccination. Results: Baseline TG parameters did not differ between patients and controls. Endogenous thrombin potential showed a significant positive correlation with markers of inflammation and with PCDAI. Inflammatory parameters and TG did not increase in patients and controls post-vaccination. Vaccination significantly increased antibody levels in all three investigated groups, but post-vaccination anti-SARS-CoV-2 S IgG/IgM levels were below the 5th percentile value of healthy children in more than one third of patients. Those receiving TNFα inhibitor therapy presented significantly lower SARS-CoV-2 S IgG/IgM levels as compared to patients on other immunosuppressive regimens. Systemic AEs did not differ between patients and controls while lower rate of local symptoms was found post-vaccination in children with IBD. Only 2 IBD flares were detected 2-6 weeks after the second dose of vaccination. Conclusion: Our study is the first to support the safety and efficacy of anti-SARS-CoV-2 BNT162b2 vaccination in children with IBD with detailed pre-and post-vaccination laboratory data including TG. Results of this study may further increase confidence and reduce vaccine hesitancy in caretakers of pediatric IBD patients.


Subject(s)
COVID-19 , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Child , Humans , Antibodies, Viral , BNT162 Vaccine , Case-Control Studies , COVID-19/prevention & control , Immunoglobulin G , Immunoglobulin M , RNA, Messenger , SARS-CoV-2 , Thrombin
9.
Front Med (Lausanne) ; 10: 1226760, 2023.
Article in English | MEDLINE | ID: mdl-37877017

ABSTRACT

Introduction: The Renin-Angiotensin-Aldosterone system (RAAS) has been implicated in the regulation of the cardiovascular system and linked to rheumatoid arthritis (RA). Little information has become available on the effects of Janus kinase (JAK) inhibition on RAAS. Here we studied the effects of 12-month tofacitinib treatment on angiotensin converting enzyme (ACE), ACE2 production and ACE/ACE2 ratios in RA along with numerous other biomarkers. Patients and methods: Thirty RA patients were treated with tofacitinib in this prospective study. Serum ACE concentrations were assessed by ELISA. ACE2 activity was determined by a specific quenched fluorescent substrate. ACE/ACE2 ratios were calculated. We also determined common carotid intima-media thickness (ccIMT), brachial artery flow-mediated vasodilation (FMD) and carotid-femoral pulse-wave velocity (cfPWV) by ultrasound. C-reactive protein (CRP), rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPA) were also determined. All measurements were performed at baseline, as well as after 6 and 12 months of tofacitinib treatment. Results: After the dropout of 4 patients, 26 completed the study. Tofacitinib treatment increased ACE levels after 6 and 12 months, while ACE2 activity only transiently increased at 6 months. The ACE/ACE2 ratio increased after 1 year of therapy (p < 0.05). Logistic regression analyses identified correlations between ACE, ACE2 or ACE/ACE2 ratios and RF at various time points. Baseline disease duration also correlated with erythrocyte sedimentation rate (ESR) (p < 0.05). One-year changes of ACE or ACE2 were determined by tofacitinib treatment plus ACPA or RF, respectively (p < 0.05). Conclusion: JAK inhibition increases serum ACE and ACE/ACE2 ratio in RA. Baseline inflammation (ESR), disease duration and ACPA, as well as RF levels at various time points can be coupled to the regulation of ACE/ACE2 ratio. The effect of tofacitinib on RAAS provides a plausible explanation for the cardiovascular effects of JAK inhibition in RA.

10.
Biomedicines ; 11(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36979933

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme (ACE) is highly expressed in renal proximal tubules, but ACE activity/levels in the urine are at least 100-fold lower than in the blood. Decreased proximal tubular ACE has been associated with renal tubular damage in both animal models and clinical studies. Because ACE is shed into urine primarily from proximal tubule epithelial cells, its urinary ACE measurement may be useful as an index of tubular damage. OBJECTIVE AND METHODOLOGY: We applied our novel approach-ACE phenotyping-to characterize urinary ACE in volunteer subjects. ACE phenotyping includes (1) determination of ACE activity using two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of the two substrates (ZPHL/HHL ratio); (3) quantification of ACE immunoreactive protein levels; and (4) fine mapping of local ACE conformation with mAbs to ACE. PRINCIPAL FINDINGS: In normal volunteers, urinary ACE activity was 140-fold less than in corresponding plasma/serum samples and did not differ between males and females. However, urinary ACE immunoreactivity (normalized binding of 25 mAbs to different epitopes) was strongly sex-dependent for the several mAbs tested, an observation likely explained by differences in tissue ACE glycosylation/sialylation between males and females. Urinary ACE phenotyping also allowed the identification of ACE outliers. In addition, daily variability of urinary ACE has potential utility as a feedback marker for dieting individuals pursuing weight loss. CONCLUSIONS/SIGNIFICANCE: Urinary ACE phenotyping is a promising new approach with potential clinical significance to advance precision medicine screening techniques.

11.
Geroscience ; 44(5): 2347-2360, 2022 10.
Article in English | MEDLINE | ID: mdl-36112333

ABSTRACT

Severe cases of COVID-19 are characterized by an inflammatory burst, which is accompanied by multiorgan failure. The elderly population has higher risk for severe or fatal outcome for COVID-19. Inflammatory mediators facilitate the immune system to combat viral infection by producing antibodies against viral antigens. Several studies reported that the pro-inflammatory state and tissue damage in COVID-19 also promotes autoimmunity by autoantibody generation. We hypothesized that a subset of these autoantibodies targets cardiac antigens. Here we aimed to detect anti-cardiac autoantibodies in severe COVID-19 patients during hospitalization. For this purpose, 104 COVID-19 patients were recruited, while 40 heart failure patients with dilated cardiomyopathy and 20 patients with severe aortic stenosis served as controls. Patients were tested for anti-cardiac autoantibodies, using human heart homogenate as a bait. Follow-up samples were available in 29 COVID-19 patients. Anti-cardiac autoantibodies were detected in 68% (71 out of 104) of severe COVID-19 patients. Overall, 39% of COVID-19 patients had anti-cardiac IgG autoantibodies, while 51% had anti-cardiac autoantibodies of IgM isotype. Both IgG and IgM anti-cardiac autoantibodies were observed in 22% of cases, and multiple cardiac antigens were targeted in 38% of COVID-19 patients. These anti-cardiac autoantibodies targeted a diverse set of myocardial proteins, without apparent selectivity. As controls, heart failure patients (with dilated cardiomyopathy) had similar occurrence of IgG (45%, p = 0.57) autoantibodies, while significantly lower occurrence of IgM autoantibodies (30%, p = 0.03). Patients with advanced aortic stenosis had significantly lower number of both IgG (11%, p = 0.03) and IgM (10%, p < 0.01) type anti-cardiac autoantibodies than that in COVID-19 patients. Furthermore, we detected changes in the anti-cardiac autoantibody profile in 7 COVID-19 patients during hospital treatment. Surprisingly, the presence of these anti-cardiac autoantibodies did not affect the clinical outcome and the prevalence of the autoantibodies did not differ between the elderly (over 65 years) and the patients younger than 65 years of age. Our results demonstrate that the majority of hospitalized COVID-19 patients produce novel anti-cardiac IgM autoantibodies. COVID-19 also reactivates resident IgG autoantibodies. These autoantibodies may promote autoimmune reactions, which can complicate post-COVID recuperation, contributing to post-acute sequelae of COVID-19 (long COVID).


Subject(s)
Aortic Valve Stenosis , COVID-19 , Cardiomyopathy, Dilated , Heart Failure , Humans , Aged , Autoantibodies , Post-Acute COVID-19 Syndrome , Immunoglobulin G , Immunoglobulin M
12.
Int J Cardiol ; 362: 196-205, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35643215

ABSTRACT

INTRODUCTION: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS: Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION: This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Inflammation , Myocytes, Cardiac , Oxidative Stress
13.
Int J Infect Dis ; 115: 8-16, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34838959

ABSTRACT

OBJECTIVES: Angiotensin-converting enzyme 2 (ACE2) represents the primary receptor for SARS-CoV-2 to enter endothelial cells. Here we investigated circulating ACE2 activity to predict the severity and mortality of COVID-19. METHODS: Serum ACE2 activity was measured in COVID-19 (110 critically ill and 66 severely ill subjects at hospital admission and 106 follow-up samples) and in 32 non-COVID-19 severe sepsis patients. Associations between ACE2, inflammation-dependent biomarkers, pre-existing comorbidities, and clinical outcomes were studied. RESULTS: Initial ACE2 activity was significantly higher in critically ill COVID-19 patients (54.4 [36.7-90.8] mU/L) than in severe COVID-19 (34.5 [25.2-48.7] mU/L; P<0.0001) and non-COVID-19 sepsis patients (40.9 [21.4-65.7] mU/L; P=0.0260) regardless of comorbidities. Circulating ACE2 activity correlated with inflammatory biomarkers and was further elevated during the hospital stay in critically ill patients. Based on ROC-curve analysis and logistic regression test, baseline ACE2 independently indicated the severity of COVID-19 with an AUC value of 0.701 (95% CI [0.621-0.781], P<0.0001). Furthermore, non-survivors showed higher serum ACE2 activity vs. survivors at hospital admission (P<0.0001). Finally, high ACE2 activity (≥45.4 mU/L) predicted a higher risk (65 vs. 37%) for 30-day mortality (Log-Rank P<0.0001). CONCLUSIONS: Serum ACE2 activity correlates with COVID-19 severity and predicts mortality.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/blood , COVID-19/diagnosis , COVID-19/mortality , Endothelial Cells , Humans , Severity of Illness Index
14.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681724

ABSTRACT

Post-ischemic left ventricular (LV) remodeling and its hypothetical prevention by repeated remote ischemic conditioning (rRIC) in male Sprague-Dawley rats were studied. Myocardial infarction (MI) was evoked by permanent ligation of the left anterior descending coronary artery (LAD), and myocardial characteristics were tested in the infarcted anterior and non-infarcted inferior LV regions four and/or six weeks later. rRIC was induced by three cycles of five-minute-long unilateral hind limb ischemia and five minutes of reperfusion on a daily basis for a period of two weeks starting four weeks after LAD occlusion. Sham operated animals served as controls. Echocardiographic examinations and invasive hemodynamic measurements revealed distinct changes in LV systolic function between four and six weeks after MI induction in the absence of rRIC (i.e., LV ejection fraction (LVEF) decreased from 52.8 ± 2.1% to 50 ± 1.6%, mean ± SEM, p < 0.05) and in the presence of rRIC (i.e., LVEF increased from 48.2 ± 4.8% to 55.2 ± 4.1%, p < 0.05). Angiotensin-converting enzyme (ACE) activity was about five times higher in the anterior LV wall at six weeks than that in sham animals. Angiotensin-converting enzyme 2 (ACE2) activity roughly doubled in post-ischemic LVs. These increases in ACE and ACE2 activities were effectively mitigated by rRIC. Ca2+-sensitivities of force production (pCa50) of LV permeabilized cardiomyocytes were increased at six weeks after MI induction together with hypophosphorylation of 1) cardiac troponin I (cTnI) in both LV regions, and 2) cardiac myosin-binding protein C (cMyBP-C) in the anterior wall. rRIC normalized pCa50, cTnI and cMyBP-C phosphorylations. Taken together, post-ischemic LV remodeling involves region-specific alterations in ACE and ACE2 activities together with changes in cardiomyocyte myofilament protein phosphorylation and function. rRIC has the potential to prevent these alterations and to improve LV performance following MI.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Carboxypeptidases/metabolism , Ischemic Postconditioning , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Animals , Carrier Proteins/metabolism , Disease Models, Animal , Heart Ventricles/metabolism , Male , Myocardial Infarction/metabolism , Myocytes, Cardiac/cytology , Phosphorylation , Rats , Rats, Sprague-Dawley , Troponin I/metabolism , Ventricular Function, Left/physiology , Ventricular Remodeling
15.
Geroscience ; 43(5): 2289-2304, 2021 10.
Article in English | MEDLINE | ID: mdl-34674152

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is essential for SARS-CoV-2 cellular entry. Here we studied the effects of common comorbidities in severe COVID-19 on ACE2 expression. ACE2 levels (by enzyme activity and ELISA measurements) were determined in human serum, heart and lung samples from patients with hypertension (n = 540), heart transplantation (289) and thoracic surgery (n = 49). Healthy individuals (n = 46) represented the controls. Serum ACE2 activity was increased in hypertensive subjects (132%) and substantially elevated in end-stage heart failure patients (689%) and showed a strong negative correlation with the left ventricular ejection fraction. Serum ACE2 activity was higher in male (147%), overweight (122%), obese (126%) and elderly (115%) hypertensive patients. Primary lung cancer resulted in higher circulating ACE2 activity, without affecting ACE2 levels in the surrounding lung tissue. Male sex resulted in elevated serum ACE2 activities in patients with heart transplantation or thoracic surgery (146% and 150%, respectively). Left ventricular (tissular) ACE2 activity was unaffected by sex and was lower in overweight (67%), obese (62%) and older (73%) patients with end-stage heart failure. There was no correlation between serum and tissular (left ventricular or lung) ACE2 activities. Neither serum nor tissue (left ventricle or lung) ACE2 levels were affected by RAS inhibitory medications. Abandoning of ACEi treatment (non-compliance) resulted in elevated blood pressure without effects on circulating ACE2 activities. ACE2 levels associate with the severity of cardiovascular diseases, suggestive for a role of ACE2 in the pathomechanisms of cardiovascular diseases and providing a potential explanation for the higher mortality of COVID-19 among cardiovascular patients. Abandoning RAS inhibitory medication worsens the cardiovascular status without affecting circulating or tissue ACE2 levels.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Female , Humans , Male , Renin-Angiotensin System , Stroke Volume , Ventricular Function, Left
16.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34359878

ABSTRACT

Objective: Inhibitors of the angiotensin converting enzyme (ACE) are the primarily chosen drugs to treat heart failure and hypertension. Moreover, an imbalance in tissue ACE/ACE2 activity is implicated in COVID-19. In the present study, we tested the relationships between circulating and tissue (lung and heart) ACE levels in men. Methods: Serum, lung (n = 91) and heart (n = 72) tissue samples were collected from Caucasian patients undergoing lung surgery or heart transplantation. ACE I/D genotype, ACE concentration and ACE activity were determined from serum and tissue samples. Clinical parameters were also recorded. Results: A protocol for ACE extraction was developed for tissue ACE measurements. Extraction of tissue-localized ACE was optimal in a 0.3% Triton-X-100 containing buffer, resulting in 260 ± 12% higher ACE activity over detergent-free conditions. SDS or higher Triton-X-100 concentrations inhibited the ACE activity. Serum ACE concentration correlated with ACE I/D genotype (II: 166 ± 143 ng/mL, n = 19, ID: 198 ± 113 ng/mL, n = 44 and DD: 258 ± 109 ng/mL, n = 28, p < 0.05) as expected. In contrast, ACE expression levels in the lung tissue were approximately the same irrespective of the ACE I/D genotype (II: 1423 ± 1276 ng/mg, ID: 1040 ± 712 ng/mg and DD: 930 ± 1273 ng/mg, p > 0.05) in the same patients (values are in median ± IQR). Moreover, no correlations were found between circulating and lung tissue ACE concentrations and activities (Spearman's p > 0.05). In contrast, a significant correlation was identified between ACE activities in serum and heart tissues (Spearman's Rho = 0.32, p < 0.01). Finally, ACE activities in lung and the serum were endogenously inhibited to similar degrees (i.e., to 69 ± 1% and 53 ± 2%, respectively). Conclusion: Our data suggest that circulating ACE activity correlates with left ventricular ACE, but not with lung ACE in human. More specifically, ACE activity is tightly coordinated by genotype-dependent expression, endogenous inhibition and secretion mechanisms.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Aged , Female , Humans , Lung/metabolism , Male , Middle Aged , Myocardium/metabolism , Peptidyl-Dipeptidase A/analysis , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Protein Processing, Post-Translational
17.
Basic Res Cardiol ; 116(1): 24, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33844095

ABSTRACT

Omecamtiv mecarbil (OM) is a promising novel drug for improving cardiac contractility. We tested the therapeutic range of OM and identified previously unrecognized side effects. The Ca2+ sensitivity of isometric force production (pCa50) and force at low Ca2+ levels increased with OM concentration in human permeabilized cardiomyocytes. OM (1 µM) slowed the kinetics of contractions and relaxations and evoked an oscillation between normal and reduced intracellular Ca2+ transients, action potential lengths and contractions in isolated canine cardiomyocytes. Echocardiographic studies and left ventricular pressure-volume analyses demonstrated concentration-dependent improvements in cardiac systolic function at OM concentrations of 600-1200 µg/kg in rats. Administration of OM at a concentration of 1200 µg/kg was associated with hypotension, while doses of 600-1200 µg/kg were associated with the following aspects of diastolic dysfunction: decreases in E/A ratio and the maximal rate of diastolic pressure decrement (dP/dtmin) and increases in isovolumic relaxation time, left atrial diameter, the isovolumic relaxation constant Tau, left ventricular end-diastolic pressure and the slope of the end-diastolic pressure-volume relationship. Moreover, OM 1200 µg/kg frequently evoked transient electromechanical alternans in the rat in vivo in which normal systoles were followed by smaller contractions (and T-wave amplitudes) without major differences on the QRS complexes. Besides improving systolic function, OM evoked diastolic dysfunction and pulsus alternans. The narrow therapeutic window for OM may necessitate the monitoring of additional clinical safety parameters in clinical application.


Subject(s)
Action Potentials/drug effects , Arrhythmias, Cardiac/chemically induced , Cardiotonic Agents/toxicity , Hypotension/chemically induced , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Urea/analogs & derivatives , Ventricular Dysfunction, Left/chemically induced , Ventricular Function, Left/drug effects , Adult , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Calcium Signaling/drug effects , Diastole , Dogs , Dose-Response Relationship, Drug , Female , Heart Rate/drug effects , Humans , Hypotension/metabolism , Hypotension/physiopathology , Kinetics , Male , Myocytes, Cardiac/metabolism , Rats, Inbred WKY , Systole , Urea/toxicity , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
18.
Geroscience ; 43(1): 19-29, 2021 02.
Article in English | MEDLINE | ID: mdl-33469835

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a high mortality in elderly patients with pre-existing cardiovascular diseases. The cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the angiotensin-converting enzyme 2 (ACE2), thereby implicating a link between cardiovascular diseases and SARS-CoV-2 susceptibility. Aortic stenosis (AS) represents a chronic inflammatory state with severe cardiovascular complications in the elderly, a prime condition for COVID-19 mortality. The circulating ACE2 levels were measured in 111 patients with severe AS and compared to patients with hypertension and healthy individuals. About 4 times higher circulating ACE2 activity was found in patients with severe AS than in hypertensives or healthy individuals (88.3 ± 61.6., n = 111, 20.6 ± 13.4, n = 540, and 16.1 ± 7.4 mU/L, n = 46, respectively). Patients with severe AS were older than patients with hypertension (80 ± 6 years vs. 60 ± 15 years, P < 0.05). Serum ACE2 activity correlated negatively with the left ventricular ejection fraction, aortic root area, TAPSE, and positively with the right ventricular systolic pressure, cardiac diameters in patients with AS. In contrast, circulating ACE2 activity was independent of the blood pressure, peak flow velocity at the aortic root, kidney function (GFR), and inflammatory state (CRP). We found no effect of RAAS inhibitory drugs on the serum ACE2 activity in this group of patients. Our results illustrate circulating ACE2 as a potential interface between chronic inflammation, cardiovascular disease, and COVID-19 susceptibility. Elderly patients with AS have markedly elevated ACE2 levels together with altered left and right ventricular functions, which may pose higher risks during COVID-19. Our clinical data do not support a role for RAAS inhibitors in regulating circulating ACE2 levels.


Subject(s)
Aortic Valve Stenosis , COVID-19 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Humans , Middle Aged , Peptidyl-Dipeptidase A , Renin-Angiotensin System , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
19.
Int J Infect Dis ; 103: 412-414, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33249290

ABSTRACT

Endothelial cells express surface angiotensin-converting enzyme 2 (ACE2), the main receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that promotes the infection of endothelial cells showing activation and damage. Bronchoalveolar lavage fluid from coronavirus disease-2019 (COVID-19) subjects showed a critical imbalance in the renin-angiotensin-aldosterone system with the upregulated expression of ACE2. Recently, intravenous recombinant ACE2 was reported as an effective therapy in severe COVID-19 by blocking the viral entry to target cells. Here, we present a case of a critically ill COVID-19 patient with acute respiratory distress syndrome where circulating ACE2 was first measured to monitor disease prognosis. ACE2 activity increased about 40-fold over the normal range and showed a distinct time course as compared to 2-3-fold higher levels of endothelium biomarkers. Although the level of soluble E-selectin followed the clinical status of our patient similar to ferritin and IL-6 levels, the dramatic rise in serum ACE2 activity may act as an endogenous nonspecific protective mechanism against SARS-CoV-2 infection that preceded the recovery of our patient.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , COVID-19/enzymology , Aged , COVID-19/blood , COVID-19/physiopathology , Critical Illness , Endothelial Cells/metabolism , Humans , Male , Renin-Angiotensin System/physiology , SARS-CoV-2
20.
Clin Chim Acta ; 513: 50-56, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33307063

ABSTRACT

Serum chitotriosidase (CTO) activity was proposed as a biomarker in sarcoidosis being potentially useful in diagnostics. Nevertheless, a common duplication polymorphism (c.1049_1072dup24, Dup24) of the CTO gene influences CTO activity and thereby compromises its use in sarcoidosis. Here we aimed to substitute CTO activity with CTO concentration to prevent the confounding effect of Dup24. CTO activity, concentration and genetic backgrounds were determined in 80 histopathology proven sarcoidosis patients and 133 healthy individuals. CTO activities were lower in healthy individuals and sarcoidosis patients heterozygous for Dup24 mutation (472 ± 367 mU/L, n = 49; 2300 ± 2105 mU/L, n = 29) than in homozygous wild types (838 ± 856 mU/L, n = 81; 5125 ± 4802 mU/L, n = 48; p < 0.001, respectively). Sera of Dup24 homozygous individuals had no CTO activity. CTO concentrations were also lower in healthy individuals and sarcoidosis patients heterozygous for Dup24 mutation (7.2 ± 1.9 µg/L, n = 11; 63.16 ± 56.5 µg/L, n = 29) than in homozygous wild types (18.9 ± 13.0 µg/L, n = 36; 157.1 ± 132.4 µg/L, n = 47, p < 0.001, respectively) suggestive for an interaction between Dup24 mutation and CTO concentration determinations. We also identified a healthy Hungarian male subject without CTO activity carrying a rare mutation (c.(965_993)del), which mutation has been considered unique for Cypriot population to date. Taken together, CTO concentration determination does not add to the CTO activity measurement when CTO is used as a biomarker in sarcoidosis. Therefore, genotyping of CTO gene should be involved in the interpretation of laboratory findings.


Subject(s)
Hexosaminidases , Sarcoidosis , Hexosaminidases/genetics , Humans , Male , Mutation , Polymorphism, Genetic , Sarcoidosis/diagnosis , Sarcoidosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...