Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Rev Rep ; 17(6): 2304-2313, 2021 12.
Article in English | MEDLINE | ID: mdl-34561772

ABSTRACT

Polycomb group protein Bmi1 is essential for hematopoietic stem cell (HSC) self-renewal and terminal differentiation. However, its target genes in hematopoietic stem and progenitor cells are largely unknown. We performed gene expression profiling assays and found that genes of the Wnt signaling pathway are significantly elevated in Bmi1 null hematopoietic stem and progenitor cells (HSPCs). Bmi1 is associated with several genes of the Wnt signaling pathway in hematopoietic cells. Further, we found that Bmi1 represses Wnt gene expression in HSPCs. Importantly, loss of ß-catenin, which reduces Wnt activation, partially rescues the HSC self-renewal and differentiation defects seen in the Bmi1 null mice. Thus, we have identified Bmi1 as a novel regulator of Wnt signaling pathway in HSPCs. Given that Wnt signaling pathway plays an important role in hematopoiesis, our studies suggest that modulating Wnt signaling may hold potential for enhancing HSC self-renewal, thereby improving the outcomes of HSC transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Wnt Signaling Pathway , Animals , Hematopoiesis/genetics , Hematopoietic Stem Cells , Mice , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Wnt Signaling Pathway/genetics
3.
Nat Commun ; 10(1): 5649, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827082

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.


Subject(s)
Epigenesis, Genetic , Hematologic Diseases/metabolism , Hematopoiesis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Hematologic Diseases/genetics , Hematologic Diseases/physiopathology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Histones/genetics , Histones/metabolism , Humans , Male , Methylation , Mice, Inbred C57BL , Mutation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...