Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Daru ; 18(3): 163-7, 2010.
Article in English | MEDLINE | ID: mdl-22615612

ABSTRACT

BACKGROUND AND THE PURPOSE OF THE STUDY: Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is involved in inflammation, apoptosis/survival and tumorigenesis as well as resistance to chemotherapy. NAG-1 protein is synthesized as pro-peptide, cleaved and secreted as mature protein. Regulation of NAG-1 is not completely discovered and increased level of NAG-1 has been reported in many cancers. The expression of NAG-1 in cancer cells could affect the progression of tumor growth. In addition the secretion of full length and mature forms of NAG-1 can influence cell proliferation in other cells. In this study the role of full length and mature forms of NAG-1 on viability of HT-1080 and MCF-7 cells were evaluated, and the cytotoxicity of celecoxib, indomethacin, tamoxifen and doxorubicin in HT1080 cells stably expressing NAG-1 were also tested. METHODS: Full length and mature NAG-1 was cloned from cDNA library of HCT116 cells and stably transfected in HT1080 cells. Cells were treated with different concentrations of indomethacin, celecoxib, tamoxifen and doxorubicin and viability was assessed by MTT assay. The effect of conditioned medium of NAG-1 expressing cells on proliferation of MCF-7 and HT1080 cells were also tested. RESULTS: The growth curves of HT1080 cells expressing full length and mature NAG-1 were not different. The viability of HT1080 cells expressing NAG-1 in the presence of indomethacin, doxorubicin and tamoxifen compared to untransfected cells was higher. The proliferation of HT1080 and MCF-7 cells were inhibited by conditioned medium of NAG-1 expressing cells in 24 and 48 hrs. MAJOR CONCLUSION: NAG-1 expression enhances drug resistance to tamoxifen, indomethacin and doxorubicin in HT1080. In addition, condition medium of NAG-1 expression cells inhibits proliferation in MCF-7 and HT1080 cells. Thus, NAG-1 expression can induce drug resistance in NAG-1 expressing cells and inhibition of viability in non expressing cells. Thus, NAG-1 is suggested as a marker for effective cancer chemotherapy and tumor progression.

SELECTION OF CITATIONS
SEARCH DETAIL