Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Pharm ; : 124341, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880252

ABSTRACT

Chronic wounds have become a growing concern as they can have a profound impact on individuals, potentially resulting in mortality. It is crucial to prevent and manage bacterial infections, particularly drug-resistant ones. Antimicrobial peptides, such as LL-37, can firmly eliminate pathogens. Additionally, the process of angiogenesis, facilitated by growth factors like VEGF, is essential for tissue repair and wound healing. To enhance the stability and bioavailability of therapeutic agents, targeted delivery strategies utilizing Chitosan-based carriers have been employed. Electrospun biopolymers in advanced wound dressings have revolutionized wound care by providing a more effective and efficient solution for promoting tissue regeneration and speeding up the healing process. The present investigation utilized Chitosan nanoparticles to encapsulate the recombinant LL37 peptide and VEGF. An in-depth investigation was carried out to analyze the biophysical and morphological traits of the LL37-CSNPs and VEGF-CSNPs. The first support layer consisted of PCL electrospun nanofiber, followed by the electrospinning of PVA/CsLL37, PVA/CsVEGF, and PVA/CsLL37/CsVEGF onto the PCL layer. An in vitro examination assessed the fabricated nanofibers' morphological, mechanical, and biological characteristics. The antimicrobial effects were tested on methicillin-resistant Staphylococcus aureus (MRSA). The in vivo experiments assessed the antibacterial and wound-healing capabilities of the nanofibers. The findings validated the continuous release of LL37 and VEGF. The composite material PCL/PVA/CsLL37/CsVEGF demonstrated potent bactericidal and antioxidant characteristics. The cytotoxic assay demonstrated the biocompatibility of the fabricated nano mats and their potential to accelerate fibroblast cell proliferation. The efficacy of PVA/CsLL37/CsVEGF in promoting wound healing was confirmed through an in vivo wound healing assay. Furthermore, the histological analysis provided evidence of faster epidermal formation and improved antibacterial activity in wounds covered with PVA/CsLL37/CsVEGF. Adding LL37 and VEGF to the composite material improves the immune response and promotes blood vessel formation, accelerating wound healing and decreasing inflammation.

2.
Cancer Cell Int ; 24(1): 108, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493153

ABSTRACT

Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.

3.
Int J Pharm ; 653: 123880, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38350498

ABSTRACT

The use of cerium oxide nanoparticles (CeO2NPs) in diabetic wound repair substances has shown promising results. Therefore, the study was conducted to introduce a novel nano-based wound dressing containing chitosan nanoparticles encapsulated with green synthesized cerium oxide nanoparticles using Thymus vulgaris extract (CeO2-CSNPs). The physical properties and structure of the nanoparticles were analyzed using XRD, DLS, FESEM and FTIR techniques. The electrospun PCL/cellulose acetate-based nanofiber was prepared and CeO2-CSNPs were integrated on the PCL/CA membrane by electrospraying. The physicochemical properties, morphology and biological characteristics of the electrospun nanocomposite were evaluated. The results showed that the nanocomposite with 0.1 % CeO2-CSNPs exhibited high antibacterial performance against S. aureus (<58.59 µg/mL). The PCL/CA/CeO2-CSNPs nanofiber showed significant antioxidant activity up to 89.59 %, cell viability improvement, and cell migration promotion up to 90.3 % after 48 h. The in vivo diabetic wound healing experiment revealed that PCL/CA/CeO2-CSNPs nanofibers can significantly increase the repair rate of diabetic wounds by up to 95.47 % after 15 days. The results of this research suggest that PCL/CA nanofiber mats functionalized with CeO2-CSNPs have the potential to be highly effective in treating diabetes-related wounds.


Subject(s)
Cellulose/analogs & derivatives , Cerium , Chitosan , Diabetes Mellitus , Nanofibers , Nanoparticles , Humans , Nanofibers/chemistry , Chitosan/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing
4.
Int J Biol Macromol ; 241: 124508, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37085076

ABSTRACT

Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Quercetin/chemistry , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/chemistry , Nanoparticles/chemistry , Colorectal Neoplasms/drug therapy
5.
Protein Pept Lett ; 30(1): 44-53, 2023.
Article in English | MEDLINE | ID: mdl-36177621

ABSTRACT

BACKGROUND: The antimicrobial peptides (AMPs) played a critical role in the innate immunity of the host and are considered natural sources illustrating a broad-spectrum antimicrobial activity with high specificity and low cytotoxicity. AMPs generally possess a net positive charge and have amphipathic structures. Thus, AMPs can bind and interact with negatively charged bacterial cell membranes, leading to destructive defects in biomembranes and ending in cell death. LL37 is the only human cathelicidin-derived antimicrobial peptide that shows a broad spectrum of antimicrobial activity. MATERIALS AND METHODS: To determine the antibacterial efficiency of LL37 in a mouse model of systemic A. baumannii infection, LL37 corresponding gene was expressed in E. coli, purification and refolding situations were optimized. The antimicrobial performance of produced LL-37 against A. baumannii was evaluated in vitro via MIC and Time Kill assays, and its destructive effects on the bacterial cell were confirmed by SEM image. RESULTS: The recombinant LL37 showed strong antibacterial function against A. baumannii at 1.5 µg/mL concentration. Time kill assay showed a sharp reduction of cell viability during the first period of exposure, and complete cell death was recorded after 40 min exposure. CONCLUSION: Furthermore, in vivo results represented a significant ability of LL37 in the treatment of systematic infected mouse models, and all infected mice receiving LL37 protein survived without no trace of bacteria in their blood samples.


Subject(s)
Acinetobacter baumannii , Antimicrobial Cationic Peptides , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Peptides , Escherichia coli/genetics , Microbial Sensitivity Tests , Cathelicidins
6.
J Biomater Sci Polym Ed ; 34(3): 277-301, 2023 02.
Article in English | MEDLINE | ID: mdl-35993229

ABSTRACT

In this study, copper nanoparticles (CuNPs) were synthetized through green chemistry approach using C. officinalis flowers extract. The biosynthetized nanoparticles were characterized by FESEM, XRD, DLS and FTIR analysis. Subsequently, PCL nanofiber was fabricated as first supportive layer by electrospinning method. Afterward, PVA/Quercus infectoria galls (QLG) extracts/biosynthetized CuNPs blending solution was electrospinned as second bioactive topical layer. The morphology, physicochemical properties and biological characteristics of the produced PCL, PCL/PVA, PCL/PVA/CuNPs, PCL/PVA/QLG and PCL/PVA/QLG/CuNPs were investigated. Eventually, in vivo wound healing effectiveness was examined. Histologic investigation was carried out for visualization of the healing wounds architecture in different treated groups. FESEM, XRD and DLS assays confirmed the successful synthesis of CuNPs in range of 40-70 nm and FTIR spectrum approve the presence of functional constituents of C. officinalis extract on synthesized CuNPs. The incorporation of CuNPs and QLG extract into PCL/PVA based nanofibers improved their biological capabilities and physicochemical properties. Furthermore, PCL/PVA/QLG/CuNPs illustrated significant wound healing potentials and excellent antibacterial function against at wounds infected with MRSA. Histological assay demonstrated complete wound healing and less inflammation on day 10th. These outcomes recommended the utilization of PCL/PVA/QLG/CuNPs as a novel promising wound dressings with considerable antibacterial features.


Subject(s)
Nanofibers , Quercus , Nanofibers/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Polyvinyl Alcohol/chemistry
7.
Iran J Basic Med Sci ; 25(2): 232-238, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35655604

ABSTRACT

Objectives: Antimicrobial peptide compounds (AMPs) play important roles in the immune system. They also exhibit significant anti-tumor and antibacterial properties. Most AMPs are cationic and are able to bind bacterial cell membranes through electrostatic affinity. Ib-AMP4 is a plant-derived AMP that exerts rapid bactericidal functions. In the present study, the antibacterial efficiency of the produced recombinant Ib-AMP4 in elimination of Methicillin-resistant Staphylococcus aureus (MRSA) bacterial infection, was investigated under in vitro and in vivo situations. Materials and Methods: The synthesized Escherichia coli codon-optimized gene sequences of the Ib-AMP4 were expressed in E. coli BL21 (DE3) pLysS. The recombinant Ib-AMP4 was purified and refolding conditions were optimized. The antibacterial efficiency of the refolded peptide against MRSA was tested under in vivo and in vitro situations for treatment of skin and systematic infection of MRSA in a mouse model. Results: Antibacterial assays confirmed the antibacterial function of Ib-AMP4 against MRSA. SEM results proved the destructive effects of applying Ib-AMP4 on MRSA biomembrane. Time-kill curve and growth kinetic assay illustrated rapid antibacterial activity of the produced Ib-AMP4. Moreover, Ib-AMP4 showed significant infection treatment ability in a mouse model and all infected mice receiving Ib-AMP4 protein survived and there was no trace of bacteria in their blood samples. Conclusion: The results confirmed the rapid antibacterial potential of the produced recombinant Ib-AMP4 to be used for efficient treatment of MRSA infection.

8.
Protein Expr Purif ; 188: 105949, 2021 12.
Article in English | MEDLINE | ID: mdl-34324967

ABSTRACT

PURPOSE: The production of alternative novel antimicrobial agents is considered an efficient way to cope with multidrug resistance among pathogenic bacteria. E50-52 and Ib-AMP4 antimicrobial peptides (AMPs) have illustrated great proven antibacterial effects. The aim of this study was recombinant production of these AMPs and investigation of their synergistic effects on methicillin-resistant Staphylococcus aureus (MRSA). METHOD: At first, the codon optimized sequences of the Ib-AMP4 (UniProt: 024006 (PRO_0000020721), and E50-52 (UniProtKB: P85148) were individually ligated into the pET-32α vector and transformed into E. coli. After the optimization of production and purification steps, the MIC (Minimum inhibitory concentration), time kill and growth kinetic tests of recombinant proteins were determined against MRSA. Finally, the in vivo wound healing efficiency was tested. RESULTS AND CONCLUSION: The recorded MIC of recombinant Trx-Ib-AMP4, Trx-E50-52 against MRSA bacterium were 0.375 and 0.0875 mg/mL respectively. The combination application of the produced AMPs by the checkerboard method confirmed their synergic activity. The results of the time-kill showed sharply decrease of the number of viable cells with over five time reductions in log10 CFU/mL by the combination of Trx-E50-52 and Trx-IbAMP4 at 2 × MIC within 240 min. The growth kinetic results confirmed the combination of Trx-E50-52 and Trx-IbAMP4 had much greater success in the reduction of over 50 % of MRSA suspensions' turbidity within the first hour. Wound healing assay and histological analysis of infected mice treated with Trx-Ib-AMP4 or Trx-E50-52 compared with those treated with a combination of Trx-Ib-AMP4 and Trx-E50-52 showed significant synergic effects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Skin Infections/drug therapy , Wounds, Nonpenetrating/drug therapy , Animals , Anti-Bacterial Agents/biosynthesis , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/genetics , Cloning, Molecular , Drug Synergism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Male , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Rats , Rats, Wistar , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Skin/drug effects , Skin/injuries , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcal Skin Infections/microbiology , Staphylococcal Skin Infections/pathology , Wound Healing/drug effects , Wounds, Nonpenetrating/microbiology , Wounds, Nonpenetrating/pathology
9.
Carbohydr Polym ; 259: 117640, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33673981

ABSTRACT

In this study, the electrospun poly(ε-caprolactone) (PCL)/Chitosan (CS)/curcumin (CUR) nanofiber was fabricated successfully with curcumin loaded chitosan nano-encapsulated particles (CURCSNPs). The morphology of the produced CURCSNPs, PCL, PCL/CS, PCL/CS/CUR, and PCL/CS/CUR electrosprayed with CURCSNPs were analyzed by scanning electron microscopy (SEM). The physicochemical properties and biological characteristics of fabricated nanofibers such as antibacterial, antioxidant, cell viability, and in vivo wound healing efficiency and histological assay were tested. The electrospraying of CURCSNPs on surface PCL/CS/CUR nanofiber resulted in the enhanced antibacterial, antioxidant, cell proliferation efficiencies and higher swelling and water vapor transition rates. In vivo examination and Histological analysis showed PCL/CS/CUR electrosprayed with CURCSNPs led to significant improvement of complete well-organized wound healing process in MRSA infected wounds. These results suggest that the application of PCL/CS/CUR electrosprayed with CURCSNPs as a wound dressing significantly facilitates wound healing with notable antibacterial, antioxidant, and cell proliferation properties.


Subject(s)
Chitosan/chemistry , Curcumin/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Wound Healing , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Nanoparticles/toxicity , Tensile Strength , Wound Healing/drug effects
10.
Sci Total Environ ; 751: 141673, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32866832

ABSTRACT

Pathogenic contamination has been considered as a significant worldwide water quality concern. Due to providing promising opportunities for the production of nanocomposite membranes with tailored porosity, adjustable pore size, and scaled-up ability of biomolecules incorporation, electrospinning has become the center of attention. This review intends to provide a detailed summary of the recent advances in the fabrication of antibacterial and antiviral electrospun nanofibers and discuss their application efficiency as a water filtration membrane. The current review attempts to give a functionalist perspective of the fundamental progress in construction strategies of antibacterial and antiviral electrospun nanofibers. The review provides a list of antibacterial and antiviral agents commonly used as water membrane filters and discusses the challenges in the incorporation process. We have thoroughly studied the recent application of functionalized electrospun nanofibers in the water disinfection process, with an emphasis on their efficiency. Moreover, different antibacterial and antiviral assay techniques for membranes are discussed, the gaps and limitations are highlighted and promising strategies to overcome barriers are studies.


Subject(s)
Nanofibers , Viruses , Anti-Bacterial Agents , Bacteria , Water
11.
J Environ Manage ; 248: 109228, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31306924

ABSTRACT

The scale-up of petroleum hydrocarbons-rich sludge (PHRS) bioremediation from liquid medium to a composting method bioaugmentated with two indigenous bacteria, capable of degrading high levels of crude oil, was surveyed. After isolating the strains (Sphingomonas olei strain KA1 and Acinetobacter radioresistens strain KA2) and determining their biomass production, emulsification index (E24), bacterial adhesion to hydrocarbon (BATH), and crude oil degradation in liquid medium, they were inoculated into the composting experiments. In liquid medium, the removal rate of crude oil were 67.25, 70.86, 61.77, 42.13, and 27.92%, respectively for the initial oil levels of 1, 2, 3, 4, and 5% after 7 days. Degradation of 10, 20, 30, 40 and 50 g kg-1 concentrations of total petroleum hydrocarbons (TPH) were also calculated to be 91.24, 87.23, 84.69, 74.08, and 60.14%, respectively after a composting duration of 12 weeks. The values of the rate constants (k) and half-lives (t1/2) of petroleum hydrocarbons degradation were 0.083-0.212 day-1 and 3.27-8.35 days for the first-order and 0.003-0.089 g kg-1day-1 and 1.12-6.67 days for the second-order model, respectively. This study verified the suitability of the isolated strains for PHRS bioremediation. Successful scale-up of PHRS bioremediation from a liquid medium to a composting process for degrading high amounts of TPH was also confirmed.


Subject(s)
Composting , Petroleum , Soil Pollutants , Bacteria , Biodegradation, Environmental , Hydrocarbons , Sewage , Soil Microbiology
12.
Int J Pharm ; 566: 307-328, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31125714

ABSTRACT

Electrospun nanofibers are known as the advanced means for wound dressing. They have represented remarkable potency to encapsulate and deliver biomolecules promoting the wound healing process. Compared to synthetic polymers, naturally derived polymers (NDP) are more qualified candidates for fabrication of biomedical electrospun scaffolds. Not only nanofibers of NDP illustrate higher biocompatibility and biodegradability rates, but also they mimic the native extracellular matrix more closely, which leads to the wound closure acceleration by enhancing tissue regeneration. Aside, incorporation of bioactive molecules and therapeutic agents into the nanofibers can generate innovative bioactive wound dressings with significantly improved healing potentials. This paper starts with a brief discussion on the steps and factors influencing the wound healing process. Then, the recent applications of electrospun nanofibers as wound dressing with healing accelerating properties are reviewed. Further, the various healing agents and alternative strategies for modification and functionalization of bioactive naturally-derived electrospun nanofibers are discussed.


Subject(s)
Bandages , Biopolymers/administration & dosage , Nanofibers/administration & dosage , Animals , Humans , Wound Healing/drug effects
13.
Ecotoxicol Environ Saf ; 168: 260-278, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30388544

ABSTRACT

Silver nanoparticles (AgNPs) have attracted a great deal of attention in the recent years. It is mostly due to their availability, chemical stability, catalytic activity, conductivity, biocompatibility, antimicrobial activity and intrinsic therapeutic properties. There are three major approaches for AgNPs synthesis; i.e., chemical, physical, and biological methods. Today, many of chemical and physical methods have become less popular due to using hazardous chemicals or their high costs, respectively. The biological method has introduced an appropriate substitute synthesis strategy for the traditional physical and chemical approaches. The utilization of the plant extracts as reducing, stabilizing and coating agent of AgNPs is an interesting eco-friendly approach leading to high efficiency. The antimicrobial and anticancer synergistic effects among the AgNPs and phytochemicals will enhance their therapeutic potentials. Surprisingly, although many studies have demonstrated the significant enhancement in cytotoxic activities of plant-mediated AgNPs toward cancerous cells, these nanoparticles have been found nontoxic to normal human cells in their therapeutic concentrations. This review provides a comprehensive insight into the mechanism of plant-mediated AgNPs synthesis, their antimicrobial and cytotoxic activities as well as their applications.


Subject(s)
Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry , Silver/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Drug Synergism , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology
14.
Molecules ; 22(6)2017 May 31.
Article in English | MEDLINE | ID: mdl-28561787

ABSTRACT

Accelerating emergence of antimicrobial resistance among food pathogens and consumers' increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein-one of the primary self-assembly proteins in milk with a high polymeric film production capability-as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3), and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time-kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope) results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteriocins/pharmacology , Caseins/pharmacology , Recombinant Fusion Proteins/pharmacology , Thymol/pharmacology , Amino Acid Sequence , Animals , Anti-Infective Agents/metabolism , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Bacteriocins/biosynthesis , Bacteriocins/genetics , Candida albicans/drug effects , Candida albicans/growth & development , Caseins/biosynthesis , Caseins/genetics , Cattle , Cloning, Molecular , Drug Combinations , Drug Synergism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Food Packaging/methods , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Microbial Sensitivity Tests , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...