Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(4): pgae081, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560528

ABSTRACT

Globally, the most intense uptake of anthropogenic carbon dioxide (CO2) occurs in the Atlantic north of 50°N, and it has been predicted that atmospheric CO2 sequestration in the Arctic Ocean will increase as a result of ice-melt and increased primary production. However, little is known about the impact of pan-Arctic sea-ice decline on carbon export processes. We investigated the potential ballasting effect of sea-ice derived material on settling aggregates and carbon export in the Fram Strait by combining 13 years of vertical flux measurements with benthic eDNA analysis, laboratory experiments, and tracked sea-ice distributions. We show that melting sea-ice in the Fram Strait releases cryogenic gypsum and terrigenous material, which ballasts sinking organic aggregates. As a result, settling velocities of aggregates increased ≤10-fold, resulting in ≤30% higher carbon export in the vicinity of the melting ice-edge. Cryogenic gypsum is formed in first-year sea-ice, which is predicted to increase as the Arctic is warming. Simultaneously, less sea-ice forms over the Arctic shelves, which is where terrigenous material is incorporated into sea-ice. Supporting this, we found that terrigenous fluxes from melting sea-ice in the Fram Strait decreased by >80% during our time-series. Our study suggests that terrigenous flux will eventually cease when enhanced sea-ice melt disrupts trans-Arctic sea-ice transport and thus, limit terrigenous-ballasted carbon flux. However, the predicted increase in Arctic primary production and gypsum formation may enhance gypsum-ballasted carbon flux and compensate for lowered terrigenous fluxes. It is thus unclear if sea-ice loss will reduce carbon export in the Arctic Ocean.

2.
Sci Adv ; 9(44): eadg2639, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922353

ABSTRACT

Paleoceanographic reconstructions show that the strength of North Atlantic currents decreased during the Little Ice Age. In contrast, the role of ocean circulation in climate regulation during earlier historical epochs of the Common Era (C.E.) remains unclear. Here, we reconstruct sea surface temperature (SST) and salinity in the Caribbean Basin for the past 1700 years using the isotopic and elemental composition of planktic foraminifera tests. Centennial-scale SST and salinity variations in the Caribbean co-occur with (hydro)climate changes in the Northern Hemisphere and are linked to a North Atlantic SST forcing. Cold phases around 600, 800, and 1400 to 1600 C.E. are characterized by Caribbean salinification and Gulf of Mexico freshening that implies reductions in the strength of North Atlantic surface circulation. We suggest that the associated changes in the meridional salt advection contributed to the historical climate variability of the C.E.

3.
Nat Commun ; 13(1): 7172, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418299

ABSTRACT

The changes in atmospheric pCO2 provide evidence for the release of large amounts of ancient carbon during the last deglaciation. However, the sources and mechanisms that contributed to this process remain unresolved. Here, we present evidence for substantial ancient terrestrial carbon remobilization in the Canadian Arctic following the Laurentide Ice Sheet retreat. Glacial-retreat-induced physical erosion of bedrock has mobilized petrogenic carbon, as revealed by sedimentary records of radiocarbon dates and thermal maturity of organic carbon from the Canadian Beaufort Sea. Additionally, coastal erosion during the meltwater pulses 1a and 1b has remobilized pre-aged carbon from permafrost. Assuming extensive petrogenic organic carbon oxidation during the glacial retreat, a model-based assessment suggests that the combined processes have contributed 12 ppm to the deglacial CO2 rise. Our findings suggest potentially positive climate feedback of ice-sheet retreat by accelerating terrestrial organic carbon remobilization and subsequent oxidation during the glacial-interglacial transition.


Subject(s)
Permafrost , Carbon/analysis , Atmosphere , Carbon Dioxide/analysis , Canada , Carbon Cycle
4.
Proc Natl Acad Sci U S A ; 117(47): 29478-29486, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33168751

ABSTRACT

Constraining the past sea ice variability in the Nordic Seas is critical for a comprehensive understanding of the abrupt Dansgaard-Oeschger (D-O) climate changes during the last glacial. Here we present unprecedentedly detailed sea ice proxy evidence from two Norwegian Sea sediment cores and an East Greenland ice core to resolve and constrain sea ice variations during four D-O events between 32 and 41 ka. Our independent sea ice records consistently reveal a millennial-scale variability and threshold response between an extensive seasonal sea ice cover in the Nordic Seas during cold stadials and reduced seasonal sea ice conditions during warmer interstadials. They document substantial and rapid sea ice reductions that may have happened within 250 y or less, concomitant with reinvigoration of deep convection in the Nordic Seas and the abrupt warming transitions in Greenland. Our empirical evidence thus underpins the cardinal role of rapid sea ice decline and related feedbacks to trigger abrupt and large-amplitude climate change of the glacial D-O events.

5.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190368, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32862819

ABSTRACT

Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250 m) and approximately 150 m above seafloor at approximately 3500 and 4000 m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO3), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren Eurasian Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Subject(s)
Ecosystem , Geologic Sediments/chemistry , Ice Cover/chemistry , Aquatic Organisms/metabolism , Arctic Regions , Biodiversity , Carbon Cycle , Oceans and Seas , Organic Chemicals/analysis , Particulate Matter/analysis , Seasons , Seawater/chemistry
6.
PLoS One ; 14(7): e0218564, 2019.
Article in English | MEDLINE | ID: mdl-31291290

ABSTRACT

Owing to the hierarchical organization of biology, from genomes over transcriptomes and proteomes down to metabolomes, there is continuous debate about the extent to which data and interpretations derived from one level, e.g. the transcriptome, are in agreement with other levels, e.g. the metabolome. Here, we tested the effect of ocean acidification (OA; 400 vs. 1000 µatm CO2) and its modulation by light intensity (50 vs. 300 µmol photons m-2 s-1) on the biomass composition (represented by 75 key metabolites) of diploid and haploid life-cycle stages of the coccolithophore Emiliania huxleyi (RCC1216 and RCC1217) and compared these data with interpretations from previous physiological and gene expression screenings. The metabolite patterns showed minor responses to OA in both life-cycle stages. Whereas previous gene expression analyses suggested that the observed increased biomass buildup derived from lipid and carbohydrate storage, this dataset suggests that OA slightly increases overall biomass of cells, but does not significantly alter their metabolite composition. Generally, light was shown to be a more dominant driver of metabolite composition than OA, increasing the relative abundances of amino acids, mannitol and storage lipids, and shifting pigment contents to accommodate increased irradiance levels. The diploid stage was shown to contain vastly more osmolytes and mannitol than the haploid stage, which in turn had a higher relative content of amino acids, especially aromatic ones. Besides the differences between the investigated cell types and the general effects on biomass buildup, our analyses indicate that OA imposes only negligible effects on E. huxleyi´s biomass composition.


Subject(s)
Haptophyta/growth & development , Seawater/chemistry , Biomass , Carbon Dioxide/analysis , Diploidy , Haploidy , Haptophyta/genetics , Haptophyta/metabolism , Hydrogen-Ion Concentration , Life Cycle Stages , Metabolome , Oceans and Seas , Transcriptome
7.
Sci Adv ; 5(3): eaau6174, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30854427

ABSTRACT

The last glacial period was marked by pronounced millennial-scale variability in ocean circulation and global climate. Shifts in sea ice cover within the Nordic Seas are believed to have amplified the glacial climate variability in northern high latitudes and contributed to abrupt, high-amplitude temperature changes over Greenland. We present unprecedented empirical evidence that resolves the nature, timing, and role of sea ice fluctuations for abrupt ocean and climate change 32 to 40 thousand years ago, using biomarker sea ice reconstructions from the southern Norwegian Sea. Our results document that initial sea ice reductions at the core site preceded the major reinvigoration of convective deep-water formation in the Nordic Seas and abrupt Greenland warming; sea ice expansions preceded the buildup of a deep oceanic heat reservoir. Our findings suggest that the sea ice variability shaped regime shifts between surface stratification and deep convection in the Nordic Seas during abrupt climate changes.

8.
Sci Rep ; 9(1): 989, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30700730

ABSTRACT

Scattered and indirect evidence suggests that sea ice occurred as far south as the Iceland Sea during the Early Pliocene, when the global climate was warmer than present. However, conclusive evidence as well as potential mechanisms governing sea ice occurrence outside the Arctic Ocean during a time with elevated greenhouse gas concentrations are still elusive. Here we present a suite of organic biomarkers and palynological records from the Iceland Sea and Yermak Plateau. We show that sea ice appeared as early as ~4.5 Ma in the Iceland Sea. The sea ice either occurred seasonally or was transported southward with the East Greenland Current. The Yermak Plateau mostly remained free of sea ice and was influenced dominantly by Atlantic water. From ~4.0 Ma, occurrence of extended sea ice conditions at both the Yermak Plateau and Iceland Sea document a substantial expansion of sea ice in the Arctic. The expansion occurred contemporaneous with increased northward heat and moisture transport in the North Atlantic region, which likely led to a fresher Arctic Ocean that favors sea ice formation. This extensive sea ice cover along the pathway of the East Greenland Current gradually isolated Greenland from warmer Atlantic water in the Late Pliocene, providing a positive feedback for ice sheet expansion in Greenland.

9.
Nat Commun ; 8(1): 373, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851908

ABSTRACT

Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

10.
Sci Rep ; 7: 46192, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393849

ABSTRACT

Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

11.
Nat Commun ; 7: 12247, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27456826

ABSTRACT

In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland-Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean.

12.
Nat Commun ; 7: 11148, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27041737

ABSTRACT

Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene sediments close to the seafloor. Here we document the presence of IP25 as a proxy for spring sea-ice cover and alkenone-based summer sea-surface temperatures >4 °C that support a seasonal sea-ice cover with an ice-free summer season being predominant during the late Miocene in the central Arctic Ocean. A comparison of our proxy data with Miocene climate simulations seems to favour either relatively high late Miocene atmospheric CO2 concentrations and/or a weak sensitivity of the model to simulate the magnitude of high-latitude warming in a warmer than modern climate.

13.
Nat Commun ; 6: 8659, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26507275

ABSTRACT

The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene.

SELECTION OF CITATIONS
SEARCH DETAIL
...