Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9917, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730038

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) remains a serious health threat in Indonesia. In particular, the CRF01_AE viruses were the predominant HIV-1 strains in various cities in Indonesia. However, information on the dynamic transmission characteristics and spatial-temporal transmission of HIV-1 CRF01_AE in Indonesia is limited. Therefore, the present study examined the spatial-temporal transmission networks and evolutionary characteristics of HIV-1 CRF01_AE in Indonesia. To clarify the epidemiological connection between CRF01_AE outbreaks in Indonesia and the rest of the world, we performed phylogenetic studies on nearly full genomes of CRF01_AE viruses isolated in Indonesia. Our results showed that five epidemic clades, namely, IDN clades 1-5, of CRF01_AE were found in Indonesia. To determine the potential source and mode of transmission of CRF01_AE, we performed Bayesian analysis and built maximum clade credibility trees for each clade. Our study revealed that CRF01_AE viruses were commonly introduced into Indonesia from Southeast Asia, particularly Thailand. The CRF01_AE viruses might have spread through major pandemics in Asian countries, such as China, Vietnam, and Laos, rather than being introduced directly from Africa in the early 1980s. This study has major implications for public health practice and policy development in Indonesia. The contributions of this study include understanding the dynamics of HIV-1 transmission that is important for the implementation of HIV disease control and prevention strategies in Indonesia.


Subject(s)
HIV Infections , HIV-1 , Phylogeny , Spatio-Temporal Analysis , Indonesia/epidemiology , HIV-1/genetics , HIV-1/classification , Humans , HIV Infections/transmission , HIV Infections/virology , HIV Infections/epidemiology , Bayes Theorem , Genome, Viral
2.
Front Med (Lausanne) ; 9: 824622, 2022.
Article in English | MEDLINE | ID: mdl-35178414

ABSTRACT

SARS-CoV-2 is the causative agent of a new type of coronavirus infection, COVID-19, which has rapidly spread worldwide. The overall genome sequence homology between SARS-CoV-2 and SARS-CoV is 79%. However, the homology of the ORF8 protein between these two coronaviruses is low, at ~26%. Previously, it has been suggested that infection by the ORF8-deleted variant of SARS-CoV-2 results in less severe symptoms than in the case of wild-type SARS-CoV-2. Although we found that ORF8 is involved in the proteasome autoimmunity system, the precise role of ORF8 in infection and pathology has not been fully clarified. In this study, we determined a new network of ORF8-interacting proteins by performing in silico analysis of the binding proteins against the previously described 47 ORF8-binding proteins. We used as a dataset 431 human protein candidates from Uniprot that physically interacted with 47 ORF8-binding proteins, as identified using STRING. Homology and phylogenetic profile analyses of the protein dataset were performed on 446 eukaryotic species whose genome sequences were available in KEGG OC. Based on the phylogenetic profile results, clustering analysis was performed using Ward's method. Our phylogenetic profiling showed that the interactors of the ORF8-interacting proteins were clustered into three classes that were conserved across chordates (Class 1: 152 proteins), metazoans (Class 2: 163 proteins), and eukaryotes (Class 3: 114 proteins). Following the KEGG pathway analysis, classification of cellular localization, tissue-specific expression analysis, and a literature study on each class of the phylogenetic profiling cluster tree, we predicted that the following: protein members in Class 1 could contribute to COVID-19 pathogenesis via complement and coagulation cascades and could promote sarcoidosis; the members of Class 1 and 2, together, may contribute to the downregulation of Interferon-ß; and Class 3 proteins are associated with endoplasmic reticulum stress and the degradation of human leukocyte antigen.

3.
Adv Exp Med Biol ; 1318: 839-857, 2021.
Article in English | MEDLINE | ID: mdl-33973215

ABSTRACT

Sudden emergence and a rapid outbreak of SARS-CoV-2 accompanied by a devastating impact on the economy and public health has driven extensive scientific mobilization to study and elucidate the various associated concerns about SARS-CoV-2. Bioinformatics plays a crucial role in addressing and providing solutions to questions about SARS-CoV-2. It helps shorten the duration for the vaccine development process and the discovery of potential clinical interventions through the simulation and information retrieval, and the development of well-ordered information hubs and resources, which are essential to derive data and meaningful findings from the current massive information about SARS-CoV-2. Advanced algorithms in this field also provide approaches that are essential to elucidate the relationship, origin, and evolutionary process of SARS-CoV-2. Here, we report essential bioinformatics entities, such as database and platform development, molecular evolution and phylogenetic analyses, and vaccine designs, that are useful to solve the SARS-CoV-2 conundrum.


Subject(s)
COVID-19 , SARS-CoV-2 , Computational Biology , Computer Simulation , Humans , Phylogeny
4.
Evol Bioinform Online ; 17: 11769343211003079, 2021.
Article in English | MEDLINE | ID: mdl-33795929

ABSTRACT

ORF8 is a highly variable genomic region of SARS-CoV-2. Although non-essential and the precise functions are unknown, it has been suggested that this protein assists in SARS-CoV-2 replication in the early secretory pathway and in immune evasion. We utilized the binding partners of SARS-CoV-2 proteins in human HEK293T cells and performed genome-wide phylogenetic profiling and clustering analyses in 446 eukaryotic species to predict and discover ORF8 binding partners that share associated functional mechanisms based on co-evolution. Results classified 47 ORF8 binding partner proteins into 3 clusters (groups 1-3), which were conserved in vertebrates (group 1), metazoan (group 2), and eukaryotes (group 3). Gene ontology analysis indicated that group 1 had no significant associated biological processes, while groups 2 and 3 were associated with glycoprotein biosynthesis process and ubiquitin-dependent endoplasmic reticulum-associated degradation pathways, respectively. Collectively, our results classified potential genes that might be associated with SARS-CoV-2 viral pathogenesis, specifically related to acute respiratory distress syndrome, and the secretory pathway. Here, we discuss the possible role of ORF8 in viral pathogenesis and in assisting viral replication and immune evasion via secretory pathway, as well as the possible factors associated with the rapid evolution of ORF8.

5.
Genes Genomics ; 43(5): 553-565, 2021 05.
Article in English | MEDLINE | ID: mdl-33740234

ABSTRACT

BACKGROUND: Histone deacetylase (HDAC)-1, a Class-I HDAC family member, forms three types of complexes, the nucleosome remodeling deacetylase, Sin3, and CoREST complexes with the specific corepressor components chromodomain-helicase-DNA-binding protein 3 (Mi2/CHD-3), Sin3, and REST corepressor 1 (RCOR1), respectively, in humans. OBJECTIVE: To elucidate the functional relationships among the three transcriptional corepressors during embryogenesis. METHODS: The activities of HDA-1, LET-418, SIN-3, and SPR-1, the homologs of HDAC-1, Mi2, Sin3, and RCOR1 in Caenorhabditis elegans during embryogenesis were investigated through measurement of relative mRNA expression levels and embryonic lethality given either gene knockdown or deletion. Additionally, the terminal phenotypes of each knockdown and mutant embryo were observed using a differential-interference contrast microscope. Finally, the functional relationships among the three corepressors were examined through genetic interactions and transcriptome analyses. RESULTS: Here, we report that each of the corepressors LET-418, SIN-3, and SPR-1 are expressed and have essential roles in C. elegans embryonic development. Our terminal phenotype observations of single mutants further implied that LET-418, SIN-3, and SPR-1 play similar roles in promoting advancement to the middle and late embryonic stages. Combined analysis of genetic interactions and gene ontology of these corepressors indicate a prominent overlapping role among SIN-3, SPR-1, and LET-418 and between SIN-3 and SPR-1. CONCLUSION: Our findings suggest that the class-I HDAC-1 corepressors LET-418, SIN-3, and SPR-1 may cooperatively regulate the expression levels of some genes during C. elegans embryogenesis or may have some similar roles but functioning independently within a specific cell.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , Embryo, Nonmammalian/embryology , Gene Expression Regulation, Developmental , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Transcriptome
6.
Infect Genet Evol ; 81: 104272, 2020 07.
Article in English | MEDLINE | ID: mdl-32142938

ABSTRACT

The seventh novel human infecting Betacoronavirus that causes pneumonia (2019 novel coronavirus, 2019-nCoV) originated in Wuhan, China. The evolutionary relationship between 2019-nCoV and the other human respiratory illness-causing coronavirus is not closely related. We sought to characterize the relationship of the translated proteins of 2019-nCoV with other species of Orthocoronavirinae. A phylogenetic tree was constructed from the genome sequences. A cluster tree was developed from the profiles retrieved from the presence and absence of homologs of ten 2019-nCoV proteins. The combined data were used to characterize the relationship of the translated proteins of 2019-nCoV to other species of Orthocoronavirinae. Our analysis reliably suggests that 2019-nCoV is most closely related to BatCoV RaTG13 and belongs to subgenus Sarbecovirus of Betacoronavirus, together with SARS coronavirus and Bat-SARS-like coronavirus. The phylogenetic profiling cluster of homolog proteins of one annotated 2019-nCoV protein against other genome sequences revealed two clades of ten 2019-nCoV proteins. Clade 1 consisted of a group of conserved proteins in Orthocoronavirinae comprising Orf1ab polyprotein, Nucleocapsid protein, Spike glycoprotein, and Membrane protein. Clade 2 comprised six proteins exclusive to Sarbecovirus and Hibecovirus. Two of six Clade 2 nonstructural proteins, NS7b and NS8, were exclusively conserved among 2019-nCoV, BetaCoV_RaTG, and BatSARS-like Cov. NS7b and NS8 have previously been shown to affect immune response signaling in the SARS-CoV experimental model. Thus, we speculated that knowledge of the functional changes in the NS7b and NS8 proteins during evolution may provide important information to explore the human infective property of 2019-nCoV.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Evolution, Molecular , Phylogeny , Viral Nonstructural Proteins/genetics , Coronaviridae/classification , Coronaviridae/genetics , Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2
7.
Int J Mol Sci ; 20(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847093

ABSTRACT

Glycans are involved in various metabolic processes via the functions of glycosyltransferases and glycoside hydrolases. Analysing the evolution of these enzymes is essential for improving the understanding of glycan metabolism and function. Based on our previous study of glycosyltransferases, we performed a genome-wide analysis of whole human glycoside hydrolases using the UniProt, BRENDA, CAZy and KEGG databases. Using cluster analysis, 319 human glycoside hydrolases were classified into four clusters based on their similarity to enzymes conserved in chordates or metazoans (Class 1), metazoans (Class 2), metazoans and plants (Class 3) and eukaryotes (Class 4). The eukaryote and metazoan clusters included N- and O-glycoside hydrolases, respectively. The significant abundance of disordered regions within the most conserved cluster indicated a role for disordered regions in the evolution of glycoside hydrolases. These results suggest that the biological diversity of multicellular organisms is related to the acquisition of N- and O-linked glycans.


Subject(s)
Computer Simulation , Databases, Genetic , Glycoside Hydrolases/genetics , Genome-Wide Association Study , Glycoside Hydrolases/classification , Humans
8.
Int J Mol Sci ; 20(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717404

ABSTRACT

Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.


Subject(s)
Computer Simulation , Evolution, Molecular , Forkhead Transcription Factors/genetics , Methyl-CpG-Binding Protein 2/genetics , Nerve Tissue Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Rett Syndrome/genetics , Animals , Chordata/genetics , Gene Ontology , Humans , Mutation, Missense/genetics , Organ Specificity , Phylogeny , Protein Binding , Protein Processing, Post-Translational , Subcellular Fractions/metabolism
9.
PLoS One ; 14(9): e0215187, 2019.
Article in English | MEDLINE | ID: mdl-31504044

ABSTRACT

Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, the bioinformatics tools to identify associated gene cascades from RNA-Seq data remain inadequate. To overcome these limitations, we developed Gene Cascade Finder (GCF) as a novel tool for building gene cascades by comparison of mutant and wild-type RNA-Seq data along with integrated information of protein-protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene cascades from RNA-Seq data.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Gene Regulatory Networks , Genomics/methods , Protein Interaction Maps , Software , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental , Neurogenesis
10.
Sci Rep ; 9(1): 1575, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733475

ABSTRACT

The mammalian CIP/KIP family proteins are intrinsically disordered proteins (IDPs) that can regulate various cellular processes. However, many reports have shown that IDPs generally evolve more rapidly than ordered proteins. Here, to elucidate the functional adaptability of CIP/KIP proteins in vertebrate, we analysed the rates of evolution in relation to their structural and sequence properties and predicted the post-translational modification based on the sequence data. The results showed that CIP/KIP proteins generally could maintain their function through evolution in the vertebrate. Basically, the disordered region that acts as a flexible linker or spacer has a conserved propensity for structural disorder and a persistent, fast rate of amino acid substitution, which could result in a significantly faster rate of evolution compared to the ordered proteins. Describing the pattern of structural order-disorder evolution, this study may give an insight into the well-known characteristics of IDPs in the evolution of CIP/KIP proteins.


Subject(s)
Calcium-Binding Proteins/chemistry , Cyclin-Dependent Kinase Inhibitor Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Amino Acid Sequence , Calcium-Binding Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Evolution, Molecular , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Phosphorylation , Phylogeny , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...