Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 80(3): 400-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21642393

ABSTRACT

The human organic anion transporting polypeptide 1B3 (OATP1B3), located in the basolateral membrane of hepatocytes, mediates the uptake of endogenous substrates such as taurocholate and drugs from blood into hepatocytes. The transport activity of OATP1B3 is influenced by positively charged amino acids, which are facing the central pore. Molecular modeling was performed to select conserved positively charged amino acids, which may influence transport activity and anchoring of OATP1B3 in the plasma membrane. The modeling revealed that Lys361 faces the pore, and Lys399 is oriented to the plasma membrane. Therefore, the mutants L361>A, L361>R, L399>A, and L399>R were generated using site-directed mutagenesis to investigate the impact of the positive charges on transport activity and anchoring in the membrane. Transport kinetic analyses for the substrates sulfobromophthalein and taurocholate showed a loss of function for the L361>A mutant, whereas the transport activity was maintained by the L361>R mutant, indicating that the positive charge at position 361 is important for transport activity of OATP1B3. Comparative modeling with OATP1A2 and OATP2B1 revealed that the pore size around this lysine residue is larger in OATP1A2 and smaller in OATP2B1 compared with OATP1B3, which could be related to the respective substrate spectra. Cell surface expression of L399>A and L399>R was decreased to 16 and 72% compared with wild-type OATP1B3 (p < 0.001), respectively, indicating that the positive charge of lysine at position 399 is necessary for an unimpaired cell surface expression. Furthermore, we provide a summary of amino acids, which influence the transport activity of OATP1B3.


Subject(s)
Organic Anion Transporters, Sodium-Independent/chemistry , Organic Anion Transporters, Sodium-Independent/physiology , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis , Organic Anion Transporters, Sodium-Independent/genetics , Structure-Activity Relationship
2.
Drug Metab Rev ; 42(3): 380-401, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20100011

ABSTRACT

Uptake transporters in the basolateral membrane of hepatocytes are important for the hepatobiliary elimination of drugs. Further, since drug-metabolizing enzymes are located intracellularly, uptake into hepatocytes is a prerequisite for their subsequent metabolism. Therefore, alteration of uptake transporter function (e.g., by concomitantly administered drugs or due to functional consequences of genetic variations, leading to reduced transport function) may result in a change in drug pharmacokinetics. In this review, we focus on the hepatocellularly expressed members of the OATP and OCT family, their impact on transport-mediated drug-drug interactions, and on the functional consequences of variations in genes encoding these transporters.


Subject(s)
Liver/metabolism , Octamer Transcription Factors/metabolism , Organic Anion Transporters/metabolism , Animals , Drug Interactions , Humans , Liver-Specific Organic Anion Transporter 1 , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , Octamer Transcription Factors/genetics , Organic Anion Transporters/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Pharmaceutical Preparations/metabolism , Pharmacogenetics , Solute Carrier Organic Anion Transporter Family Member 1B3
SELECTION OF CITATIONS
SEARCH DETAIL
...