Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 260: 109915, 2024 03.
Article in English | MEDLINE | ID: mdl-38286172

ABSTRACT

The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.


Subject(s)
HIV Infections , Humans , Macrophages , Monocytes , Phenotype , TOR Serine-Threonine Kinases/metabolism
2.
Cancer Cell Int ; 22(1): 204, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35642054

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor, progesterone receptor, and HER2. Our lab previously characterized miR-3189-3p as a microRNA with potent anti-cancer activity against glioblastoma. Here, we hypothesized a similar activity in TNBC cells. As miR-3189-3p is predicted to target a variety of RNA binding proteins, we further hypothesized an inhibitory effect of this miRNA on protein synthesis. METHODS: MDA-MB-231 and MDA-MB-468 cells were used to investigate the effect of miR-3189-3p on cell proliferation, migration, and invasion. TGCA database was used to analyze the expression of miR-3189-3p, c-MYC, 4EPB1, and eIF4E in breast cancer. Western blotting and RT-qPCR assays were used to assess the expression of selected proteins and RNAs after transfections. RESULTS: Although c-MYC is not a predicted gene target for miR-3189-3p, we discovered that c-MYC protein is downregulated in miRNA-treated TNBC cells. We found that the downregulation of c-MYC by miR-3189-3p occurs in both normal growth conditions and in the absence of serum. The mechanism involved the direct inhibition of eIF4EBP1 by miR-3189-3p. Additionally, we found that miR-3189-3p could negatively affect cap-independent translation mediated by internal ribosome entry sites (IRES) or by m6A. Finally, miR-3189-3p sensitized TNBC cells to doxorubicin. CONCLUSION: Overall, results indicated that miR-3189-3p exerts its anti-tumor activity through targeting translational regulatory proteins leading to an impairment in c-MYC translation, and possibly other oncogenic factors, suggesting that miR-3189-3p, alone or in combination, could be a valuable therapeutic approach against a malignancy with few treatment options.

3.
Sci Rep ; 12(1): 3384, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35232976

ABSTRACT

Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 months. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthetized based compounds, which were synthetized based on the chemical structure of a common lipid-lowering drug, fenofibrate, and share a general molecular skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their physical properties such as solubility (logS), blood-brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System-Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood-brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.


Subject(s)
Brain Neoplasms , Glioblastoma , Antineoplastic Agents, Alkylating/pharmacology , Blood-Brain Barrier/metabolism , Brain Neoplasms/pathology , Endothelial Cells/metabolism , Glioblastoma/pathology , Humans , Temozolomide/pharmacology
4.
Front Immunol ; 12: 785905, 2021.
Article in English | MEDLINE | ID: mdl-34917094

ABSTRACT

Persons living with HIV (PLWH) are at higher risk of developing secondary illnesses than their uninfected counterparts, suggestive of a dysfunctional immune system in these individuals. Upon exposure to pathogens, monocytes undergo epigenetic remodeling that results in either a trained or a tolerant phenotype, characterized by hyper-responsiveness or hypo-responsiveness to secondary stimuli, respectively. We utilized CD14+ monocytes from virally suppressed PLWH and healthy controls for in vitro analysis following polarization of these cells toward a pro-inflammatory monocyte-derived macrophage (MDM) phenotype. We found that in PLWH-derived MDMs, pro-inflammatory signals (TNFA, IL6, IL1B, miR-155-5p, and IDO1) dominate over negative feedback signals (NCOR2, GSN, MSC, BIN1, and miR-146a-5p), favoring an abnormally trained phenotype. The mechanism of this reduction in negative feedback involves the attenuated expression of IKZF1, a transcription factor required for de novo synthesis of RELA during LPS-induced inflammatory responses. Furthermore, restoring IKZF1 expression in PLWH-MDMs partially reinstated expression of negative regulators of inflammation and lowered the expression of pro-inflammatory cytokines. Overall, this mechanism may provide a link between dysfunctional immune responses and susceptibility to co-morbidities in PLWH with low or undetectable viral load.


Subject(s)
Disease Susceptibility/immunology , HIV Infections/immunology , Ikaros Transcription Factor/metabolism , Macrophages/immunology , Transcription Factor RelA/metabolism , Anti-HIV Agents/administration & dosage , Case-Control Studies , Cytokines/metabolism , Feedback, Physiological , Female , Gene Expression Regulation/immunology , HIV/immunology , HIV/isolation & purification , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/virology , Healthy Volunteers , Humans , Inflammation/blood , Inflammation/immunology , Lipopolysaccharides/immunology , Macrophages/metabolism , Male , Middle Aged , Signal Transduction/drug effects , Signal Transduction/immunology , Transcription Factor RelA/genetics , Viral Load/drug effects , Viral Load/immunology
5.
Drug Discov Today Dis Models ; 32(Pt A): 5-11, 2020.
Article in English | MEDLINE | ID: mdl-33692833

ABSTRACT

Neurocognitive disorders associated with HIV-1 infection affect more than half of persons living with HIV (PLWH) under retroviral therapy. Understanding the molecular mechanisms and the complex cellular network communication underlying neurological dysfunction is critical for the development of an effective therapy. As with other neurological disorders, challenges to studying HIV infection of the brain include limited access to clinical samples and proper reproducibility of the complexity of brain networks in cellular and animal models. This review focuses on cellular models used to investigate various aspects of neurological dysfunction associated with HIV infection.

6.
J Vis Exp ; (154)2019 12 16.
Article in English | MEDLINE | ID: mdl-31885371

ABSTRACT

Human immunodeficiency virus (HIV) remains a major health concern despite the introduction of combined antiretroviral therapy (cART) in the mid-1990s. While antiretroviral therapy efficiently lowers systemic viral load and restores normal CD4+ T cell counts, it does not reconstitute a completely functional immune system. A dysfunctional immune system in HIV-infected individuals undergoing cART may be characterized by immune activation, early aging of immune cells, or persistent inflammation. These conditions, along with comorbid factors associated with HIV infection, add complexity to the disease, which cannot be easily reproduced in cellular and animal models. To investigate the molecular events underlying immune dysfunction in these patients, a system to culture and manipulate human primary monocytes in vitro is presented here. Specifically, the protocol allows for the culture and transfection of primary CD14+ monocytes obtained from HIV-infected individuals undergoing cART as well as from HIV-negative controls. The method involves isolation, culture, and transfection of monocytes and monocyte-derived macrophages. While commercially available kits and reagents are employed, the protocol provides important tips and optimized conditions for successful adherence and transfection of monocytes with miRNA mimics and inhibitors as well as with siRNAs.


Subject(s)
Cell Separation/methods , Monocytes/cytology , Transfection , Animals , Cell Polarity , Cell Survival , Cells, Cultured , Down-Regulation , Humans , Macrophage Activation , Macrophages/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...