ABSTRACT
OBJECTIVE: Genetic variations in the dopamine (DA) system are associated with cortical-striatal behavior in multiple populations. This study assessed associations of functional polymorphisms in the ankyrin repeat and kinase domain (ANKK1; Taq1a) and catechol-O-methyltransferase (COMT; Val158Met) genes with behavioral dysfunction following traumatic brain injury (TBI). PARTICIPANTS: This was a prospective study of 90 survivors of severe TBI recruited from a level 1 trauma center. MAIN MEASURES: The Frontal Systems Behavior Scale, a self- or family report questionnaire evaluating behavior associated with frontal lobe dysfunction, was completed 6 and 12 months postinjury. Depression was measured concurrently with the Patient Health Questionnaire-9. Study participants were genotyped for Val158Met and Taq1a polymorphisms. RESULTS: No statistically significant behavioral differences were observed by Taq1a or Val158Met genotype alone. At 12 months, among those with depression, Met homozygotes (Val158Met) self-reported worse behavior than Val carriers (P = .015), and A2 homozygotes (Taq1a) self-reported worse behavior than A1 carriers (P = .028) in bivariable analysis. Multivariable models suggest an interaction between depression and genetic variation with behavior at 12 months post-TBI, and descriptive analysis suggests that carriage of both risk alleles may contribute to worse behavioral performance than carriage of either risk allele alone. CONCLUSION: In the context of depression, Val158Met and Taq1a polymorphisms are individually associated with behavioral dysfunction 12 months following severe TBI, with preliminary evidence suggesting cumulative, or perhaps epistatic, effects of COMT and ANKK1 on behavioral dysfunction.
Subject(s)
Brain Injuries, Traumatic/complications , Catechol O-Methyltransferase/genetics , Depression/etiology , Depression/genetics , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Adult , Brain Injuries, Traumatic/genetics , Female , Follow-Up Studies , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Psychiatric Status Rating Scales , Statistics, Nonparametric , Surveys and QuestionnairesABSTRACT
BACKGROUND: Mortality predictions following traumatic brain injury (TBI), and our understanding of TBI pathology, may be improved by including genetic risk in addition to traditional prognostic variables. One promising target is the gene coding for brain-derived neurotrophic factor (BDNF), a ubiquitous neurotrophin important for neuronal survival and neurogenesis. OBJECTIVE: We hypothesized the addition of BDNF genetic variation would improve mortality prediction models and that BDNF Met-carriers (rs6265) and C-carriers (rs7124442) would have the highest mortality rates post-TBI. METHODS: This study examined BDNF functional single nucleotide polymorphisms rs6265 (val66met) and rs7124442 (T>C) in relation to mortality in a prospective, longitudinal cohort with severe TBI. We examined 315 individuals receiving care for a closed head injury within the University of Pittsburgh Medical Center, aged 16 to 74 years. Mortality was examined acutely (0-7 days postinjury) and postacutely (8-365 days postinjury). A gene risk score (GRS) was developed to examine both BDNF loci. Cox proportional hazards models were used to calculate hazard ratios for survivability post-TBI while controlling for covariates. RESULTS: BDNF GRS was significantly associated with acute mortality, regardless of age. Interestingly, subjects in the hypothesized no-risk allele group had the lowest survival probability. Postacutely, BDNF-GRS interacted with age such that younger participants in the no-risk group had the highest survival probability, while older participants in the hypothesized no-risk group had the lowest probability of survival. CONCLUSIONS: These data suggest complex relationships between BDNF and TBI mortality that interact with age to influence survival predictions beyond clinical variables alone. Evidence supporting dynamic, temporal balances of pro-survival/pro-apoptotic target receptors may explain injury and age-related gene associations.