Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 20(12): 3742-5, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20471258

ABSTRACT

A series of biaryl amides containing an azabicyclooctane amine headpiece were synthesized and evaluated as mixed arginine vasopressin (AVP) receptor antagonists. Several analogues, including 8g, 12g, 13d, and 13g, were shown to have excellent V(1a)- and good V(2)-receptor binding affinities. Compound 13d was further profiled for drug-like properties and for an in vitro comparison with conivaptan, the program's mixed V(1a)/V(2)-receptor antagonist standard.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Arginine Vasopressin/antagonists & inhibitors , Aza Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Octanes/chemical synthesis , Animals , Aza Compounds/pharmacology , Benzazepines , Bridged Bicyclo Compounds/pharmacology , Humans , Molecular Structure , Octanes/pharmacology , Structure-Activity Relationship
2.
J Med Chem ; 52(15): 4955-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19719241

ABSTRACT

On the basis of the previously reported clinical candidate, SSA-426 (1), a series of related 2-piperazin-1-ylquinoline derivatives 3-16 were synthesized and evaluated as dual-acting serotonin (5-HT) reuptake inhibitors and 5-HT1A receptor antagonists. In particular, compound 7 exhibits potent functional activities at both the 5-HT transporter and 5-HT1A receptor, good selectivity over the alpha1-adrenergic and dopaminergic receptors, acceptable pharmacokinetic properties, and a favorable in vivo profile.


Subject(s)
Piperazines/chemical synthesis , Quinolines/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists , Serotonin Antagonists/chemical synthesis , Animals , Antidepressive Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme Inhibitors , Humans , Microdialysis , Piperazines/pharmacology , Quinolines/pharmacology , Rats , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Dopamine/metabolism , Serotonin Antagonists/pharmacokinetics , Serotonin Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship
3.
Antimicrob Agents Chemother ; 50(2): 556-64, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16436710

ABSTRACT

A series of 3,5-dioxopyrazolidines was identified as novel inhibitors of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Compounds 1 to 3, which are 1,2-bis(4-chlorophenyl)-3,5-dioxopyrazolidine-4-carboxamides, inhibited Escherichia coli MurB, Staphyloccocus aureus MurB, and E. coli MurA with 50% inhibitory concentrations (IC50s) in the range of 4.1 to 6.8 microM, 4.3 to 10.3 microM, and 6.8 to 29.4 microM, respectively. Compound 4, a C-4-unsubstituted 1,2-bis(3,4-dichlorophenyl)-3,5-dioxopyrazolidine, showed moderate inhibitory activity against E. coli MurB, S. aureus MurB, and E. coli MurC (IC50s, 24.5 to 35 microM). A fluorescence-binding assay indicated tight binding of compound 3 with E. coli MurB, giving a dissociation constant of 260 nM. Structural characterization of E. coli MurB was undertaken, and the crystal structure of a complex with compound 4 was obtained at 2.4 A resolution. The crystal structure indicated the binding of a compound at the active site of MurB and specific interactions with active-site residues and the bound flavin adenine dinucleotide cofactor. Peptidoglycan biosynthesis studies using a strain of Staphylococcus epidermidis revealed reduced peptidoglycan biosynthesis upon incubation with 3,5-dioxopyrazolidines, with IC50s of 0.39 to 11.1 microM. Antibacterial activity was observed for compounds 1 to 3 (MICs, 0.25 to 16 microg/ml) and 4 (MICs, 4 to 8 microg/ml) against gram-positive bacteria including methicillin-resistant S. aureus, vancomycin-resistant Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbohydrate Dehydrogenases/antagonists & inhibitors , Gram-Positive Bacteria/drug effects , Pyrazoles/pharmacology , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/metabolism , Crystallography , Fluorescence , Microbial Sensitivity Tests , Peptidoglycan/biosynthesis , Protein Binding
4.
Bioorg Med Chem Lett ; 16(4): 954-9, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16297621

ABSTRACT

Our efforts in seeking low molecular weight agonists of the antidiuretic peptide hormone arginine vasopressin (AVP) have led to the identification of the clinical candidate WAY-151932 (VNA-932). Further exploration of the structural requirements for agonist activity has provided another class of potent, orally active, non-peptidic vasopressin V2 receptor selective agonists exemplified by the 5,11-dihydro-pyrido[2,3-b][1,5]benzodiazepine as a candidate for further development.


Subject(s)
Benzodiazepines/classification , Benzodiazepines/pharmacology , Receptors, Vasopressin/agonists , Administration, Oral , Animals , Benzazepines/administration & dosage , Benzodiazepines/administration & dosage , Drug Evaluation, Preclinical , Molecular Structure , Molecular Weight , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...