Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(34): e1801147, 2018 08.
Article in English | MEDLINE | ID: mdl-30027685

ABSTRACT

Optical waveguiding phenomena found in bioinspired chemically synthesized peptide nanostructures are a new paradigm which can revolutionize emerging fields of precise medicine and health monitoring. A unique combination of their intrinsic biocompatibility with remarkable multifunctional optical properties and developed nanotechnology of large peptide wafers makes them highly promising for new biomedical light therapy tools and implantable optical biochips. This Review highlights a new field of peptide nanophotonics. It covers peptide nanotechnology and the fabrication process of peptide integrated optical circuits, basic studies of linear and nonlinear optical phenomena in biological and bioinspired nanostructures, and their passive and active optical waveguiding. It is shown that the optical properties of this generation of bio-optical materials are governed by fundamental biological processes. Refolding the peptide secondary structure is followed by wideband optical absorption and visible tunable fluorescence. In peptide optical waveguides, such a bio-optical effect leads to switching from passive waveguiding mode in native α-helical phase to an active one in the ß-sheet phase. The found active waveguiding effect in ß-sheet fiber structures below optical diffraction limit opens an avenue for the future development of new bionanophotonics in ultrathin peptide/protein fibrillar structures toward advanced biomedical nanotechnology.


Subject(s)
Microarray Analysis , Nanostructures/chemistry , Optical Phenomena , Peptides/chemistry , Precision Medicine , Nanotechnology
2.
J Chem Phys ; 142(15): 154111, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25903870

ABSTRACT

A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

3.
Nano Lett ; 12(5): 2228-32, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22463365

ABSTRACT

We have studied the influence of both exciton effects and Coulomb repulsion on current in molecular nanojunctions. We show that dipolar energy-transfer interactions between the sites in the wire can at high voltage compensate Coulomb blocking for particular relationships between their values. Tuning this relationship may be achieved by using the effect of plasmonic nanostructure on dipolar energy-transfer interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...