Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5470, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723165

ABSTRACT

Optomechanical systems provide a pathway for the bidirectional optical-to-microwave interconversion in (quantum) networks. These systems can be implemented using hybrid platforms, which efficiently couple optical photons and microwaves via intermediate agents, e.g. phonons. Semiconductor exciton-polariton microcavities operating in the strong light-matter coupling regime offer enhanced coupling of near-infrared photons to GHz phonons via excitons. Furthermore, a new coherent phonon-exciton-photon quasiparticle termed phonoriton, has been theoretically predicted to emerge in microcavities, but so far has eluded observation. Here, we experimentally demonstrate phonoritons, when two exciton-polariton condensates confined in a µm-sized trap within a phonon-photon microcavity are strongly coupled to a confined phonon which is resonant with the energy separation between the condensates. We realize control of phonoritons by piezoelectrically generated phonons and resonant photons. Our findings are corroborated by quantitative models. Thus, we establish zero-dimensional phonoritons as a coherent microwave-to-optical interface.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(4): OSA1-OSA2, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37132989

ABSTRACT

South American optics research has seen remarkable growth over the past 50 years, with significant contributions in areas such as quantum optics, holography, spectroscopy, nonlinear optics, statistical optics, nanophotonics and integrated photonics. The research has driven economic development in sectors like telecom, biophotonics, biometrics, and agri-sensing. This joint feature issue between JOSA A and JOSA B exhibits cutting-edge optics research from the region, fostering a sense of community and promoting collaboration among researchers.

3.
Nanoscale ; 11(21): 10446-10453, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31112191

ABSTRACT

A time-resolved observation of coherent interlayer longitudinal acoustic phonons in thin layers of 2H-MoSe2 is reported. A femtosecond pump-probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe2 flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality. For thicker samples, the main acoustic attenuation mechanism is attributed to the scattering of the acoustic modes with thermal phonons. For samples thinner than ∼20 molecular layers, the predominant damping mechanism is ascribed to the effects of surface asperity. Losses intrinsic to the low dimensionality of single or few layer materials impose critical limitations for their use in optomechanical and optoelectronic devices.

4.
ACS Appl Mater Interfaces ; 6(7): 5263-72, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24621107

ABSTRACT

We introduce a nanoparticle-mesoporous oxide thin film composite (NP-MOTF) as low-cost and straightforward sensing platforms for surface-enhanced Raman Spectroscopy (SERS). Titania, zirconia, and silica mesoporous matrices templated with Pluronics F-127 were synthesized via evaporation-induced self-assembly and loaded with homogeneously dispersed Ag nanoparticles by soft reduction or photoreduction. Both methods give rise to uniform and reproducible Raman signals using 4-mercaptopyridine as a probe molecule. Details on stability and reproducibility of the Raman enhancement are discussed. Extensions in the design of these composite structures were explored including detection of nonthiolated molecules, such as rhodamine 6-G or salicylic acid, patterning techniques for locating the enhancement regions and bilayered mesoporous structures to provide additional control on the environment, and potential size-selective filtration. These inorganic oxide-metal composites stand as extremely simple, reproducible, and versatile platforms for Raman spectroscopy analysis.

5.
Rev Sci Instrum ; 85(1): 013103, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24517741

ABSTRACT

We present a novel ultra-high resolution Raman spectroscopy technique based in a Fabry-Pérot/triple spectrometer tandem with multichannel acquisition. We describe the system, detail the calibration process, and experimentally test the technique, showing that effective finesses in excess of 1000 are possible. The technique is specifically tailored for low intensity, complex and spectrally extended Raman spectra, providing shorter acquisition times with respect to similar tandem systems with monochannel detectors.

6.
J Am Chem Soc ; 135(7): 2809-15, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23384115

ABSTRACT

Single-molecule (SM) electrochemistry studied by surface-enhanced Raman scattering (SERS) with high spectral resolution reveals a picture in which the frequency of Raman modes is correlated with the electrochemical process through the interaction with the surface. Previously unexplored phenomena can be revealed by the synergy of electrochemistry and SM-SERS, which explores in this case subtler spectroscopic aspects (like the frequency of a vibration within the inhomogeneous broadening of a many-molecules Raman peak) to gain the information. We demonstrate, among other things, that the interaction with the surface is correlated both with the molecule vibrational frequencies and with the ability of single molecules to be reduced/oxidized at different potentials along the electrochemical cycle. Qualitative models of the interaction of molecules with surfaces are also touched upon.

7.
Nanoscale ; 4(2): 531-40, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22127420

ABSTRACT

Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.


Subject(s)
Cyanides/chemistry , Gold/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Sulfhydryl Compounds/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
8.
ACS Nano ; 5(7): 5433-43, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21675769

ABSTRACT

We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10-100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 10-20 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.

9.
J Am Chem Soc ; 132(51): 18034-7, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21138263

ABSTRACT

Coherent control of chemical species in complex systems is always subject to intrinsic inhomogeneities from the environment. For example, slight chemical modifications can decisively affect transport properties of molecules on surfaces. Hence, single-molecule (SM) studies are the best solution to avoid these problems and to study diverse phenomena in biology, physics, and chemistry. Along these lines, monitoring SM redox processes has always been a "holy grail" in electrochemistry. To date, claims of SM electrochemistry by spectroscopy have come only from fluorescence quenching of polymers and redox-fluorescent molecules. In unconnected developments, the potential of the bianalyte surface-enhanced Raman scattering (SERS) method as a technique with SM sensitivity has been demonstrated. Raman spectroscopy has the potential to explore SM detection of any molecule, independent of its chemical nature. We provide definitive proof of SM events following redox cycles using SERS. The superior sensitivity and spectral richness of SERS makes it general enough to study, in principle, SM electron transfer of any (label-free) molecule.

10.
Anal Chem ; 82(16): 6919-25, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20704381

ABSTRACT

Electrochemical modulation to induce controlled fluctuations in SERS signals is introduced as a method to discriminate and isolate different contributions to the spectra. The modulation--which can be changed in potential range, amplitude, and frequency--acts as a controllable "switch" to turn on, off, or change specific Raman signals which can then be correlated within the spectra by different fluctuation analysis techniques. Principal component analysis (PCA), either by itself or assisted by fast fourier transform (FFT) prefiltering, are shown to provide viable tools to isolate the different components of the spectra. Electrochemical modulation provides, therefore, a technique to study complex cases of coadsorption, and resolve problems of spectral congestion in SERS signals.

11.
Phys Chem Chem Phys ; 11(34): 7412-23, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19690713

ABSTRACT

We describe a general framework to design nanobiosensors based on a wired enzyme coupled to a redox molecule and integrated with SERS Au core-shell nanoparticles and ordered nanocavities. The response of the proposed sensor is based on the different electronic resonant Raman behavior of the oxidized or reduced electronic states of the molecular wire, and on the surface plasmon amplification induced by the tailored metallic substrate. The nanobiosensors can be interrogated remotely through the resonant Raman scattering intensity recovery or spectral variation of the redox molecule, an Os-complex, when the latter varies its oxidation state. Alternatively, we show through two-color spectro-electrochemistry that Raman scattering is also finely sensitive to oxidation state changes of flavin, a biomimetic system that mimics the active center of many flavoprotein enzymes. We show that multiple sample spectroscopic ellipsometry gives access to the spectral dependence of the optical constants of single redox-molecule layers, and through it to the electronic resonances of the system. All the components for selective molecular recognition and for the generation of an optical amplified signal, are self-contained in the proposed biosensor. As proof of concept a compact SERS sensor responsive to glucose with millimolar concentration in solution is demonstrated.


Subject(s)
Biosensing Techniques , Microscopy, Electron, Scanning , Models, Molecular , Molecular Structure , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Osmium/chemistry , Oxidation-Reduction , Pyridines/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods
12.
Phys Chem Chem Phys ; 11(34): 7469-75, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19690721

ABSTRACT

The engineering of cavity void metallic arrays allows to vary the plasmon-polariton mode energies from the near infrared to the ultraviolet through the tuning of the void height and diameter, and the selection of the appropriate material. Typically Au nanocavity substrates can be grown with better reproducibility, homogeneity, and stability, while Ag structures display significantly larger SERS enhancements. To exploit these two apparently excluding aspects, quality and enhancement, we report a detailed study of 500 nm Au-nanocavity templates modified by the controlled electrochemical deposition of 100 Ag layers, a thickness similar to the visible light skin-depth of bulk Ag. The SERS amplification of the ordered cavity-arrays is determined using 4-mercaptopyridine as a non-electronic resonant molecular probe. The ultrathin Ag layer modification of the Au substrates results in a strong amplification of the SERS signal both in the red and the green part of the spectrum, and in a spectral shift of the Raman resonance scans. These observations are assigned to Ag-induced changes in the plasmon-polariton response of the nanostructure. The reported results provide a general platform for the preparation of renewable SERS-active substrates that combine the durability and higher quality of Au nanotemplates, with the enhanced SERS amplification factors of Ag.


Subject(s)
Metal Nanoparticles/chemistry , Pyridines/chemistry , Silver/chemistry , Pyridines/classification , Spectrum Analysis, Raman/methods
13.
Chemphyschem ; 10(11): 1927-33, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19598194

ABSTRACT

Thiol-covered nanostructured gold has been tested as a platform for the preparation of high-area phospholipid bilayer systems suitable for optical and electrochemical sensing. In situ and ex situ Raman spectroscopy and electrochemical measurements are made to study methylene blue (MB) and flavin-adenine dinucleotide (FAD) incorporation into dimyristoylphosphatidylcholine (DMPC) bilayers prepared by vesicle fusion on dithiothreitol (DTT)-covered nanostructured gold. Results show that lipophilic positively charged MB molecules are incorporated in the bilayer reaching the DTT-gold interface. On the other hand, the negatively charged FAD molecules are immobilized at the outer part of the phospholipid bilayer and cannot be electrochemically detected. Our results demonstrate that DTT-covered nanostructured gold provides a suitable high-area platform for phospholipid membranes that are able to separate and sense different kinds of molecules and biomolecules.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Dithiothreitol/chemistry , Flavin-Adenine Dinucleotide/chemistry , Gold/chemistry , Lipid Bilayers/chemistry , Methylene Blue/chemistry , Electrochemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxidation-Reduction , Spectrum Analysis, Raman , Sulfhydryl Compounds/chemistry
14.
Langmuir ; 24(13): 7018-23, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18537281

ABSTRACT

In situ electrochemical surface enhanced Raman spectra (SERS) for an immobilized monolayer of a flavin analogue (isoalloxazine) at nanostructured silver surfaces are reported. Unique in the present study, the flavin is not directly adsorbed at the Ag surface but is attached through a chemical reaction between cysteamine adsorbed on the Ag surface and methylformylisoalloxazine. Even though the flavin is held away from direct contact with the metal, strong surface enhancements are observed. The nanostructured silver surfaces are produced by electrodeposition through colloidal templates to produce thin (<1 microm) films containing close-packed hexagonal arrays of uniform 900 nm sphere segment voids. The sphere segment void (SSV) structured silver surfaces are shown to be ideally suited to in situ electrochemical SERS studies at 633 nm, giving stable, reproducible surface enhancements at a range of electrode potentials, and we show that the SER spectra are sensitive to subfemtomole quantities of immobilized flavin. Studies of the SER spectra as a function of the electrode potential show clear evidence for the formation of the flavin semiquinone at the electrode surface at cathodic potentials.

15.
J Nanosci Nanotechnol ; 6(8): 2362-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17037842

ABSTRACT

The immobilization of methylene blue (MB) on iodine-covered Au(111) is studied by electrochemical techniques, scanning tunneling microscopy (STM), Auger Electron Spectroscopy (AES), and Raman spectroscopy. Results show that MB species are efficiently adsorbed on the square root of 3 x square root of 3 R30 degrees I lattice on Au(111). The electrochemical behavior of the adsorbed MB molecules is reversible, indicating a relatively fast electron transfer from the Au(111) surface to the immobilized MB species through the iodine layer. STM images with molecular resolution are consistent with adsorption of MB dimers on a square root of 3 x square root of 3 R30 degrees I lattice placed atop of the Au(111) substrate. Results are compared to those obtained for MB immobilized on Au(111) covered by S(n) (n = 3-8) surface structures.


Subject(s)
Electrochemistry/methods , Gold/chemistry , Iodine/chemistry , Methylene Blue/chemistry , Nanotechnology/methods , Adsorption , Dimerization , Enzyme Inhibitors/pharmacology , Kinetics , Microscopy, Scanning Tunneling/methods , Models, Chemical , Nanostructures , Spectrum Analysis, Raman , Surface Properties
16.
J Phys Chem B ; 110(1): 354-60, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16471542

ABSTRACT

Resonant Raman and surface-enhanced Raman scattering (SERS) spectroscopies, complemented with scanning tunnel microscopy and electrochemical techniques, have been used to obtain information about the amount and spatial distribution of methylene blue (MB) molecules immobilized on sulfur and four ultrathin molecular alkanethiolate films self-assembled on Au(111) and rough Au electrodes. The intensity of the Raman signals allow one to estimate the amount of immobilized MB at different organic films, whereas the decrease in the SERS intensity as a function of distance for the rough Au electrodes is used to locate the average position of the MB species with respect to the Au substrate. We found that significant amounts of cationic MB species are able to diffuse into methyl-terminated thiols, but they are stopped at the outer plane of the self-assembled monolayer (SAM) by negatively charged carboxylate groups. The relative shift of C-N stretching Raman modes indicates that the binding of MB to S is different from that found for MB on thiols. Most of the molecules immobilized on methyl- and carboxylate-terminated thiols are electrochemically inactive, suggesting that strong coupling between the Au electrode and the MB molecules is needed for charge transfer. Our results are consistent with a small population of electrochemically active MB species very close to the Au surface that reach this position driven by their lipophilic (hydrophobic) character through defects at SAMs.


Subject(s)
Gold/chemistry , Methylene Blue/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/methods , Sulfhydryl Compounds/chemistry , Sulfur/chemistry , Adsorption , Sensitivity and Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...