Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36435176

ABSTRACT

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Subject(s)
Alternative Splicing , RNA Splicing , Humans , Base Sequence , Introns/genetics , Exons/genetics
2.
Nat Methods ; 16(1): 55-58, 2019 01.
Article in English | MEDLINE | ID: mdl-30573814

ABSTRACT

Targeted RNA sequencing (RNA-seq) aims to focus coverage on areas of interest that are inadequately sampled in standard RNA-seq experiments. Here we present multiplexed primer extension sequencing (MPE-seq), an approach for targeted RNA-seq that uses complex pools of reverse-transcription primers to enable sequencing enrichment at user-selected locations across the genome. We targeted hundreds to thousands of pre-mRNA splice junctions and obtained high-precision detection of splice isoforms, including rare pre-mRNA splicing intermediates.


Subject(s)
DNA Primers , Genes, Fungal , RNA Splicing , Saccharomyces cerevisiae/genetics , High-Throughput Nucleotide Sequencing , Reverse Transcription
3.
Cell ; 164(1-2): 310-323, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26771498

ABSTRACT

Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution.


Subject(s)
Protein Interaction Maps , Proteome/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Databases, Protein , Disease/genetics , Evolution, Molecular , Humans , Principal Component Analysis , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...