Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 91(5): 2126-2141, 2024 May.
Article in English | MEDLINE | ID: mdl-38156813

ABSTRACT

PURPOSE: Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS: Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (µFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS: MD was ˜40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher µFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower µFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION: DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.


Subject(s)
Ischemic Stroke , Stroke , White Matter , Humans , Diffusion Tensor Imaging/methods , Ischemic Stroke/pathology , Diffusion Magnetic Resonance Imaging/methods , White Matter/pathology , Stroke/diagnostic imaging , Anisotropy , Brain/diagnostic imaging , Brain/pathology
2.
JAMA ; 325(21): 2160-2168, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34061146

ABSTRACT

Importance: The relative rates of detection of atrial fibrillation (AF) or atrial flutter from evaluating patients with prolonged electrocardiographic monitoring with an external loop recorder or implantable loop recorder after an ischemic stroke are unknown. Objective: To determine, in patients with a recent ischemic stroke, whether 12 months of implantable loop recorder monitoring detects more occurrences of AF compared with conventional external loop recorder monitoring for 30 days. Design, Setting, and Participants: Investigator-initiated, open-label, randomized clinical trial conducted at 2 university hospitals and 1 community hospital in Alberta, Canada, including 300 patients within 6 months of ischemic stroke and without known AF from May 2015 through November 2017; final follow-up was in December 2018. Interventions: Participants were randomly assigned 1:1 to prolonged electrocardiographic monitoring with either an implantable loop recorder (n = 150) or an external loop recorder (n = 150) with follow-up visits at 30 days, 6 months, and 12 months. Main Outcomes and Measures: The primary outcome was the development of definite AF or highly probable AF (adjudicated new AF lasting ≥2 minutes within 12 months of randomization). There were 8 prespecified secondary outcomes including time to event analysis of new AF, recurrent ischemic stroke, intracerebral hemorrhage, death, and device-related serious adverse events within 12 months. Results: Among the 300 patients who were randomized (median age, 64.1 years [interquartile range, 56.1 to 73.7 years]; 121 were women [40.3%]; and 66.3% had a stroke of undetermined etiology with a median CHA2DS2-VASc [congestive heart failure, hypertension, age ≥75 years, diabetes, stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category] score of 4 [interquartile range, 3 to 5]), 273 (91.0%) completed cardiac monitoring lasting 24 hours or longer and 259 (86.3%) completed both the assigned monitoring and 12-month follow-up visit. The primary outcome was observed in 15.3% (23/150) of patients in the implantable loop recorder group and 4.7% (7/150) of patients in the external loop recorder group (between-group difference, 10.7% [95% CI, 4.0% to 17.3%]; risk ratio, 3.29 [95% CI, 1.45 to 7.42]; P = .003). Of the 8 specified secondary outcomes, 6 were not significantly different. There were 5 patients (3.3%) in the implantable loop recorder group who had recurrent ischemic stroke vs 8 patients (5.3%) in the external loop recorder group (between-group difference, -2.0% [95% CI, -6.6% to 2.6%]), 1 (0.7%) vs 1 (0.7%), respectively, who had intracerebral hemorrhage (between-group difference, 0% [95% CI, -1.8% to 1.8%]), 3 (2.0%) vs 3 (2.0%) who died (between-group difference, 0% [95% CI, -3.2% to 3.2%]), and 1 (0.7%) vs 0 (0%) who had device-related serious adverse events. Conclusions and Relevance: Among patients with ischemic stroke and no prior evidence of AF, implantable electrocardiographic monitoring for 12 months, compared with prolonged external monitoring for 30 days, resulted in a significantly greater proportion of patients with AF detected over 12 months. Further research is needed to compare clinical outcomes associated with these monitoring strategies and relative cost-effectiveness. Trial Registration: ClinicalTrials.gov Identifier: NCT02428140.


Subject(s)
Atrial Fibrillation/diagnosis , Electrocardiography, Ambulatory/methods , Electrodes, Implanted , Stroke , Aged , Atrial Fibrillation/complications , Atrial Flutter/complications , Atrial Flutter/diagnosis , Brain Ischemia/complications , Electrocardiography, Ambulatory/adverse effects , Electrocardiography, Ambulatory/instrumentation , Female , Humans , Ischemic Attack, Transient/etiology , Male , Middle Aged , Recurrence , Stroke/etiology , Stroke/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...