Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38559105

ABSTRACT

Egocentric distance and real-world size are important cues for object perception and action. Nevertheless, most studies of human vision rely on two-dimensional pictorial stimuli that convey ambiguous distance and size information. Here, we use fMRI to test whether pictures are represented differently in the human brain from real, tangible objects that convey unambiguous distance and size cues. Participants directly viewed stimuli in two display formats (real objects and matched printed pictures of those objects) presented at different egocentric distances (near and far). We measured the effects of format and distance on fMRI response amplitudes and response patterns. We found that fMRI response amplitudes in the lateral occipital and posterior parietal cortices were stronger overall for real objects than for pictures. In these areas and many others, including regions involved in action guidance, responses to real objects were stronger for near vs. far stimuli, whereas distance had little effect on responses to pictures-suggesting that distance determines relevance to action for real objects, but not for pictures. Although stimulus distance especially influenced response patterns in dorsal areas that operate in the service of visually guided action, distance also modulated representations in ventral cortex, where object responses are thought to remain invariant across contextual changes. We observed object size representations for both stimulus formats in ventral cortex but predominantly only for real objects in dorsal cortex. Together, these results demonstrate that whether brain responses reflect physical object characteristics depends on whether the experimental stimuli convey unambiguous information about those characteristics. Significance Statement: Classic frameworks of vision attribute perception of inherent object characteristics, such as size, to the ventral visual pathway, and processing of spatial characteristics relevant to action, such as distance, to the dorsal visual pathway. However, these frameworks are based on studies that used projected images of objects whose actual size and distance from the observer were ambiguous. Here, we find that when object size and distance information in the stimulus is less ambiguous, these characteristics are widely represented in both visual pathways. Our results provide valuable new insights into the brain representations of objects and their various physical attributes in the context of naturalistic vision.

2.
J Cogn Neurosci ; 33(12): 2477-2493, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34407193

ABSTRACT

The cognitive and neural bases of visual perception are typically studied using pictures rather than real-world stimuli. Unlike pictures, real objects are actionable solids that can be manipulated with the hands. Recent evidence from human brain imaging suggests that neural responses to real objects differ from responses to pictures; however, little is known about the neural mechanisms that drive these differences. Here, we tested whether brain responses to real objects versus pictures are differentially modulated by the "in-the-moment" graspability of the stimulus. In human dorsal cortex, electroencephalographic responses show a "real object advantage" in the strength and duration of mu (µ) and low beta (ß) rhythm desynchronization-well-known neural signatures of visuomotor action planning. We compared desynchronization for real tools versus closely matched pictures of the same objects, when the stimuli were positioned unoccluded versus behind a large transparent barrier that prevented immediate access to the stimuli. We found that, without the barrier in place, real objects elicited stronger µ and ß desynchronization compared to pictures, both during stimulus presentation and after stimulus offset, replicating previous findings. Critically, however, with the barrier in place, this real object advantage was attenuated during the period of stimulus presentation, whereas the amplification in later periods remained. These results suggest that the "real object advantage" is driven initially by immediate actionability, whereas later differences perhaps reflect other, more inherent properties of real objects. The findings showcase how the use of richer multidimensional stimuli can provide a more complete and ecologically valid understanding of object vision.


Subject(s)
Electroencephalography , Visual Perception , Cerebral Cortex , Humans , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...