Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Monit ; 29: e942649, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38148601

ABSTRACT

This systematic review aimed to identify and analyze in vitro studies on the marginal adaptation values of computer-aided-design/computer-aided-manufacturing (CAD/CAM) and heat-pressed lithium disilicate glass ceramics and zirconia-reinforced lithium silicates and endocrown restorations. A full literature search was conducted in Web of Science, PubMed/Medline, EMBASE, Scopus, Cochrane Library, Google Scholar, and ProQuest electronic databases. The following keywords: endocrown [(marginal adaption) or (marginal fit) or internal fitting)], endocrown [(molar(s)) or (premolar(s) or (posterior teeth) or (maxillary arch) or (mandibular arch)] and ceramic materials as [(lithium disilicate glass ceramic CAD/CAM) or (zirconia) or (heat-press)] were used. Articles were manually searched utilizing their reference lists. Study selection was restricted or limited to the time of publication but not to the type of tested teeth or ceramic material, endocrown design, system of endocrown construction, abutment scanning, and system of the marginal adaption measurement. A total of 17 in vitro studies published between 2016 and 2023 were included in this systemic review. Less than half of the studies were published during 2023. Most studies used lithium disilicate glass ceramic and zirconia-reinforced lithium silicate all-ceramic materials by CAD/CAM or heat-press systems. Marginal adaptation, or marginal gap, was almost equal in the 2 materials, while it was slightly or marginally higher in the heat-press than in the CAD/CAM system. All-ceramic lithium disilicate glass ceramic and/or zirconia endocrowns fabricated for posterior teeth in both arches using CAD/CAM or heat-press had recorded marginal adaptation values within an acceptable range.


Subject(s)
Ceramics , Lithium , Materials Testing , Dental Porcelain , Silicates , Dental Prosthesis Design
2.
Front Digit Health ; 4: 940330, 2022.
Article in English | MEDLINE | ID: mdl-36060540

ABSTRACT

Harnessing Real World Data is vital to improve health care in the 21st Century. Data from Electronic Health Records (EHRs) are a rich source of patient centred data, including information on the patient's clinical condition, laboratory results, diagnoses and treatments. They thus reflect the true state of health systems. However, access and utilisation of EHR data for research presents specific challenges. We assert that using data from EHRs effectively is dependent on synergy between researchers, clinicians and health informaticians, and only this will allow state of the art methods to be used to answer urgent and vital questions for patient care. We propose that there needs to be a paradigm shift in the way this research is conducted - appreciating that the research process is iterative rather than linear. We also make specific recommendations for organisations, based on our experience of developing and using EHR data in trusted research environments.

4.
Evol Appl ; 10(8): 784-791, 2017 09.
Article in English | MEDLINE | ID: mdl-29151870

ABSTRACT

Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.

5.
Brain Struct Funct ; 220(4): 2315-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24859884

ABSTRACT

Human ancestors first modified stones into tools 2.6 million years ago, initiating a cascading increase in technological complexity that continues today. A parallel trend of brain expansion during the Paleolithic has motivated over 100 years of theorizing linking stone toolmaking and human brain evolution, but empirical support remains limited. Our study provides the first direct experimental evidence identifying likely neuroanatomical targets of natural selection acting on toolmaking ability. Subjects received MRI and DTI scans before, during, and after a 2-year Paleolithic toolmaking training program. White matter fractional anisotropy (FA) showed changes in branches of the superior longitudinal fasciculus leading into left supramarginal gyrus, bilateral ventral precentral gyri, and right inferior frontal gyrus pars triangularis. FA increased from Scan 1-2, a period of intense training, and decreased from Scan 2-3, a period of reduced training. Voxel-based morphometry found a similar trend toward gray matter expansion in the left supramarginal gyrus from Scan 1-2 and a reversal of this effect from Scan 2-3. FA changes correlated with training hours and with motor performance, and probabilistic tractography confirmed that white matter changes projected to gray matter changes and to regions that activate during Paleolithic toolmaking. These results show that acquisition of Paleolithic toolmaking skills elicits structural remodeling of recently evolved brain regions supporting human tool use, providing a mechanistic link between stone toolmaking and human brain evolution. These regions participate not only in toolmaking, but also in other complex functions including action planning and language, in keeping with the hypothesized co-evolution of these functions.


Subject(s)
Biological Evolution , Frontal Lobe/anatomy & histology , Frontal Lobe/physiology , Parietal Lobe/anatomy & histology , Tool Use Behavior/physiology , Adolescent , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Motor Activity , Parietal Lobe/physiology , Young Adult
6.
J Neural Eng ; 9(4): 046016, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22791699

ABSTRACT

Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.


Subject(s)
Brain-Computer Interfaces/economics , Eye Movements , Fixation, Ocular , Imaging, Three-Dimensional/economics , Imaging, Three-Dimensional/methods , Video Games/economics , Costs and Cost Analysis , Eye Movements/physiology , Fixation, Ocular/physiology , Humans , Young Adult
7.
J Exp Biol ; 204(Pt 4): 637-48, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11171346

ABSTRACT

A locust placed upside down on a flat surface uses a predictable sequence of leg movements to right itself. To analyse this behaviour, we made use of a naturally occurring state of quiescence (thanatosis) to position locusts in a standardised upside-down position from which they spontaneously right themselves. Locusts grasped around the pronotum enter a state of thanatosis during which the limbs can be manipulated into particular postures, where they remain, and the animal can be placed upside down on the ground. When released, thanatosis lasts 4-456 s (mean 73 s) before the animal suddenly becomes active again and rights itself within a further 600 ms. Thanatosis is characterised by very low levels of leg motor activity. During righting, one hind leg provides most of the downward force against the ground that rolls the body around a longitudinal axis towards the other side. The driving force is produced by femoral levation (relative to the body) at the trochanter and by tibial extension. As the animal rolls over, the hind leg on the other side is also levated at the trochanter, so that it does not obstruct the movement. The forelegs and middle legs are not required for successful righting but they can help initially to tip the locust to one side, and at the end of the movement they help stop the roll as the animal turns upright. Individual locusts have a preferred righting direction but can, nevertheless, roll to either side. Locusts falling upside down through the air use both passive and active mechanisms to right themselves before they land. Without active movements, falling locusts tend to rotate into an upright position, but most locusts extend their hind leg tibiae and/or spread their wings, which increases the success of mid-air righting from 28 to 49 % when falling from 30 cm. The rapid and reliable righting behaviour of locusts reduces the time spent in a vulnerable upside-down position. Their narrow body geometry, large hind legs, which can generate substantial dorsally directed force, and the particular patterns of coordinated movements of the legs on both sides of the body are the key features that permit locusts to right themselves effectively. The reliability of autonomous multi-legged robots may be enhanced by incorporating these features into their design.


Subject(s)
Grasshoppers/physiology , Muscles/physiology , Animals , Behavior, Animal , Computer Simulation , Extremities/anatomy & histology , Extremities/physiology , Female , Male , Motor Activity/physiology , Movement , Orientation , Rotation , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...