Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 85(1): 13-21, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34436587

ABSTRACT

ABSTRACT: The increasing demand for slipper oyster (Crassostrea iredalei) has propelled farmers to expand oyster cultivation areas in the Philippines, chiefly for local consumption and feasibly for export overseas. As filter feeders, oysters can accumulate pathogens from the surrounding waters, and these pathogens can cause foodborne diseases in consumers. Therefore, oyster farming areas must be monitored for microbiological quality and heavy metal concentrations. In the present study, the microbiological quality of oysters and their growing waters in the major oyster farming areas of the Cogon and Palina Rivers and Cabugao Bay (in Roxas City and the Municipality of Ivisan, respectively, Capiz Province, Western Visayas, Philippines) were examined monthly during the wet (May to October) and dry (November to April) seasons over 12 months. Regardless of the sampling period, high levels of fecal coliforms in the water and Escherichia coli in oysters were found, clearly illustrating that these oyster growing areas would meet only the class B standard under the European Union classification system and would be considered "prohibited" for growing oysters under the U.S. classification system. Although Salmonella was occasionally detected in oysters, Vibrio cholerae was not detected and Vibrio parahaemolyticus was within acceptable limits. The heavy metal concentrations in oyster meat were also determined during the wet (July) and dry (March) seasons. Zinc and copper were the most abundant metals detected, and concentrations of lead, cadmium, mercury, and chromium were below the regulatory limits set by the European Union and the U.S. Food and Drug Administration. These oyster culture areas should be rehabilitated immediately to improve the microbiological quality of the oysters. Oysters harvested from these sites must be depurated or relayed to ensure quality and safety.


Subject(s)
Crassostrea , Metals, Heavy , Ostreidae , Animals , Crassostrea/microbiology , Metals, Heavy/analysis , Ostreidae/microbiology , Philippines , Sanitation , Shellfish/microbiology
2.
Fish Shellfish Immunol ; 69: 153-163, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28797637

ABSTRACT

Changes in innate immunity parameters and epinecidin mRNA transcript levels were examined to characterize the non-specific immune response of E. coioides to pathogenic V. harveyi JML1 isolated from affected cage-cultured fish. After fish had been injected with bacteria at a dose causing 30% mortality, blood and tissue samples were collected at 0, 6, 12, 24, 48, 72, 96, 120, and 240 h post-infection (hpi) for assessment of indices such as the oxidative burst (OB) and phagocytic index (PI) of head kidney cells, and lysozyme activity (LYS) and total immunoglobulin (Total Ig) levels of the plasma. The epinecidin mRNA transcript levels (EGE) from skin, gills, liver, kidney, and spleen tissues were also determined by gel-based RT-PCR. Lastly, daily mortality (DM), liver total bacterial load (TBC), and presumptive Vibrio count (TVC) were monitored up to 240 hpi. The results revealed that bacteria proliferated rapidly in fish tissue, reaching peak densities at 24 hpi for both TBC and TVC but was on a downward trend thereafter. The pattern in fish mortality closely correlated with TBC and TVC. Total Ig, OB, and PI in E. coioides were suppressed in the early part of infection when V. harveyi load was high but recovered and later increased as bacterial density declined. LYS and EGE were consistently high and their activities were not hampered by bacterial infection. The study demonstrated that V. harveyi JML1 interacts with E. coioides by transiently inhibiting some immune parameters resulting in mortalities. However, consistently high LYS, upregulated EGE, and resurgent PI, OB and Total Ig conferred resistance and subsequent recovery in the fish. The study provides new insights on the interaction between E. coioides and V. harveyi JML1 that can aid in formulating health management strategies for groupers. Further studies on prophylactic interventions to enhance the innate immune response in grouper during infection with V. harveyi JML1 are suggested.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Bass , Fish Diseases/immunology , Fish Diseases/mortality , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate , Vibrio Infections/veterinary , Animals , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...