Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8013): 878-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38720086

ABSTRACT

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Computer Simulation , Drug Design , SARS-CoV-2 , Animals , Female , Humans , Mice , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Mutation , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , DNA Mutational Analysis , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , Drug Design/methods
2.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36324800

ABSTRACT

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

3.
Sci Rep ; 12(1): 12489, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864134

ABSTRACT

Alchemical free energy perturbation (FEP) is a rigorous and powerful technique to calculate the free energy difference between distinct chemical systems. Here we report our implementation of automated large-scale FEP calculations, using the Amber software package, to facilitate antibody design and evaluation. In combination with Hamiltonian replica exchange, our FEP simulations aim to predict the effect of mutations on both the binding affinity and the structural stability. Importantly, we incorporate multiple strategies to faithfully estimate the statistical uncertainties in the FEP results. As a case study, we apply our protocols to systematically evaluate variants of the m396 antibody for their conformational stability and their binding affinity to the spike proteins of SARS-CoV-1 and SARS-CoV-2. By properly adjusting relevant parameters, the particle collapse problems in the FEP simulations are avoided. Furthermore, large statistical errors in a small fraction of the FEP calculations are effectively reduced by extending the sampling, such that acceptable statistical uncertainties are achieved for the vast majority of the cases with a modest total computational cost. Finally, our predicted conformational stability for the m396 variants is qualitatively consistent with the experimentally measured melting temperatures. Our work thus demonstrates the applicability of FEP in computational antibody design.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Antibodies , Humans , SARS-CoV-2 , Thermodynamics
4.
J Comput Biol ; 26(6): 597-604, 2019 06.
Article in English | MEDLINE | ID: mdl-30681362

ABSTRACT

Traditionally, precision medicine involves classifying patients to identify subpopulations that respond favorably to specific therapeutics. We pose precision medicine as a dynamic feedback control problem, where treatment administered to a patient is guided by measurements taken during the course of treatment. We consider sepsis, a life-threatening condition in which dysregulation of the immune system causes tissue damage. We leverage an existing simulation of the innate immune response to infection and apply deep reinforcement learning (DRL) to discover an adaptive personalized treatment policy that specifies effective multicytokine therapy to simulated sepsis patients based on systemic measurements. The learned policy achieves a dramatic reduction in mortality rate over a set of 500 simulated patients relative to standalone antibiotic therapy. Advantages of our approach are threefold: (1) the use of simulation allows exploring therapeutic strategies beyond clinical practice and available data, (2) advances in DRL accommodate learning complex therapeutic strategies for complex biological systems, and (3) optimized treatments respond to a patient's individual disease progression over time, therefore, capturing both differences across patients and the inherent randomness of disease progression within a single patient. We hope that this work motivates both considering adaptive personalized multicytokine mediation therapy for sepsis and exploiting simulation with DRL for precision medicine more broadly.


Subject(s)
Precision Medicine/methods , Computer Simulation , Deep Learning , Humans
5.
Math Biosci ; 226(1): 28-37, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20361985

ABSTRACT

Many papers in the medical literature analyze the cost-effectiveness of screening for diseases by comparing a limited number of a priori testing policies under estimated problem parameters. However, this may be insufficient to determine the best timing of the tests or incorporate changes over time. In this paper, we develop and solve a Markov Decision Process (MDP) model for a simple class of asymptomatic diseases in order to provide the building blocks for analysis of a more general class of diseases. We provide a computationally efficient method for determining a cost-effective dynamic intervention strategy that takes into account (i) the results of the previous test for each individual and (ii) the change in the individual's behavior based on awareness of the disease. We demonstrate the usefulness of the approach by applying the results to screening decisions for Hepatitis C (HCV) using medical data, and compare our findings to current HCV screening recommendations.


Subject(s)
Decision Theory , Diagnosis , Mass Screening/statistics & numerical data , Models, Statistical , Therapeutics/statistics & numerical data , Cost-Benefit Analysis/statistics & numerical data , Disease/economics , Hepatitis C/diagnosis , Hepatitis C/economics , Hepatitis C/therapy , Humans , Markov Chains , Mass Screening/economics , Stochastic Processes , Time Factors
6.
Math Biosci ; 220(2): 143-56, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19538974

ABSTRACT

We examine bias in Markov models of diseases, including both chronic and infectious diseases. We consider two common types of Markov disease models: ones where disease progression changes by severity of disease, and ones where progression of disease changes in time or by age. We find sufficient conditions for bias to exist in models with aggregated transition probabilities when compared to models with state/time dependent transition probabilities. We also find that when aggregating data to compute transition probabilities, bias increases with the degree of data aggregation. We illustrate by examining bias in Markov models of Hepatitis C, Alzheimer's disease, and lung cancer using medical data and find that the bias is significant depending on the method used to aggregate the data. A key implication is that by not incorporating state/time dependent transition probabilities, studies that use Markov models of diseases may be significantly overestimating or underestimating disease progression. This could potentially result in incorrect recommendations from cost-effectiveness studies and incorrect disease burden forecasts.


Subject(s)
Disease Progression , Markov Chains , Models, Biological , Age Factors , Algorithms , Alzheimer Disease/diagnosis , Bias , Computer Simulation , Hepatitis C, Chronic/diagnosis , Humans , Lung Neoplasms/diagnosis , Monte Carlo Method , Probability , Severity of Illness Index , Time Factors
7.
J Acquir Immune Defic Syndr ; 44(4): 386-94, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17279050

ABSTRACT

Bathhouses and sex clubs were identified as primary venues for HIV transmission during the original HIV epidemic. Because HIV incidence is increasing in some high-risk groups, their potential role in HIV transmission is being examined again. We present an extension of the Bernoulli process model of HIV transmission to incorporate subpopulations with different behaviors in sex acts, condom use, and choice of partners in a single period of time. With this model, we study the role that bathhouses and sex clubs play in HIV transmission using data from the 1997 Urban Men's Health Study. If sexual activity remains the same, we find that bathhouse closures would likely lead to a small increase in HIV transmission in the period examined by this study, although this impact is less than that which would be achieved through a 1% change in current condom use rates. If, conversely, bathhouse closure leads to a reduction of the sexual activity that was in the bathhouse by at least 2%, HIV transmission would be lowered.


Subject(s)
HIV Infections/transmission , Sex , Sexual Behavior , Sexually Transmitted Diseases/transmission , Female , Humans , Male , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...