Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(15): 4639-4646, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33826341

ABSTRACT

We report the stress-strain effect of a stretchable natural rubber (NR)-calcium phosphate composite on the surface wettability (SW) using an innovative approach coupling a uniaxial tensile micromachine, goniometer, and microscope. In situ contact angle measurements in real time were performed during mechanical tension. Our results show that SW is guided by the stress-strain relationship with two different characteristics, depending on the static or dynamic experiments. The results evidenced the limits of the classical theory of wetting. Furthermore, based on the mechanically tunable SW of the system associated with the cytocompatibility of the NR composite, we have modeled such a system for application as a cell support. From the experimental surface energy value, our proposed 3D modeling numerical simulation predicted a window of opportunities for cell-NR survival under mechanical stimuli. The presented data and the thermodynamics-based theoretical approach enable not only accurate correlation of SW with mechanical properties of the NR composite but also provide huge potential for future cell supportability in view of tissue engineering.

2.
Chem Phys Lipids ; 218: 22-33, 2019 01.
Article in English | MEDLINE | ID: mdl-30508514

ABSTRACT

The bioflavonoid quercetin may prevent magnetoliposomes oxidation, preserving their stability. In this work, the interaction between quercetin and asolectin-based magnetoliposomes was investigated by monitoring the hydration degree, vibrational, rotational and translational mobility parameters of the system as well as its thermodynamic properties. The efficiency of the encapsulation of maghemite magnetic nanoparticles was detected by high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The magnetic behavior of the system was studied by vibrating sample magnetometry (VSM) technique. The size and surface charge of magnetoliposomes were detected by dynamic light scattering (DLS) and zeta potential (ζ-potential) measurements. The influence of quercetin on the physico-chemical parameters of the magnetoliposomes was evaluated by Fourier transform infrared spectroscopy (FTIR), 31P and 1H nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. In vitro antioxidant and antitumoral assays were also performed for the magnetoliposomes. An insertion of quercetin into magnetoliposomes reduced the efficiency of the encapsulation of maghemite nanoparticles by 11%, suggesting a significant interaction between flavonoid and nanoparticles in a specific region of the system. Quercetin discreetly decreased the saturation magnetization of magnetoliposomes, but did not affect the superparamagnetic behavior of the system. 31P and 1H NMR results showed that quercetin did not alter the inverted hexagonal system phase state but decreased lipid polar head mobility. The flavonoid also seems to reorient the choline group above the bilayer phosphate membrane plane, as indicated by ζ-potential system values. FTIR, NMR and DSC responses showed that quercetin disordered the carbonyl and the methylene regions of the magnetoliposomes. Quercetin, as the nanoparticles, seems to be located in the polar head regions of magnetoliposomes, ordering it and diminishing the lipid intermolecular communication in the membrane carbonyl and non-polar regions. The lipid peroxidation of the magnetoliposomes was prevented 8-fold by the presence of quercetin in the system. Also, the flavonoid was responsible for a 45% reduction in the viability of glioma cells. Location and interactions between quercetin and magnetoliposomes components were discussed in order to be correlated with the results of biological activity, contributing to the design of more stable and efficient magnetoliposomes to be applied as contrast and antitumoral agents.


Subject(s)
Antioxidants/chemistry , Quercetin/chemistry , Animals , Antioxidants/pharmacology , Cell Survival/drug effects , Chemistry, Physical , Dose-Response Relationship, Drug , Liposomes/chemistry , Magnetic Fields , Molecular Structure , Quercetin/pharmacology , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...