Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
Stem Cells ; 42(4): 301-316, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262709

ABSTRACT

Somatic cells that have been partially reprogrammed by the factors Oct4, Sox2, Klf4, and cMyc (OSKM) have been demonstrated to be potentially tumorigenic in vitro and in vivo due to the acquisition of cancer-associated genomic alterations and the absence of OSKM clearance over time. In the present study, we obtained partially reprogrammed, SSEA1-negative cells by transducing murine hepatocytes with Δ1Δ3-deleted adenoviruses that expressed the 4 OSKM factors. We observed that, under long-term 2D and 3D culture conditions, hepatocytes could be converted into LGR5-positive cells with self-renewal capacity that was dependent on 3 cross-signaling pathways: IL6/Jak/Stat3, LGR5/R-spondin, and Wnt/ß-catenin. Following engraftment in syngeneic mice, LGR5-positive cells that expressed the cancer markers CD51, CD166, and CD73 were capable of forming invasive and metastatic tumors reminiscent of intrahepatic cholangiocarcinoma (ICC): they were positive for CK19 and CK7, featured associations of cord-like structures, and contained cuboidal and atypical cells with dissimilar degrees of pleomorphism and mitosis. The LGR5+-derived tumors exhibited a highly vascularized stroma with substantial fibrosis. In addition, we identified pro-angiogenic factors and signaling pathways involved in neo-angiogenesis and vascular development, which represent potential new targets for anti-angiogenic strategies to overcome tumor resistance to current ICC treatments.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Mice , Hepatocytes/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Wnt Signaling Pathway/genetics
3.
Front Oncol ; 13: 1117781, 2023.
Article in English | MEDLINE | ID: mdl-37007090

ABSTRACT

The classical natural history of chronic myeloid leukemia (CML) has been drastically modified by the introduction of tyrosine kinase inhibitor (TKI) therapies. TKI discontinuation is currently possible in patients in deep molecular responses, using strict recommendations of molecular follow-up due to risk of molecular relapse, especially during the first 6 months. We report here the case of a patient who voluntarily interrupted her TKI therapy. She remained in deep molecular remission (MR4) for 18 months followed by detection of a molecular relapse at +20 months. Despite this relapse, she declined therapy until the occurrence of the hematological relapse (+ 4 years and 10 months). Retrospective sequential transcriptome experiments and a single-cell transcriptome RNA-seq analysis were performed. They revealed a molecular network focusing on several genes involved in both activation and inhibition of NK-T cell activity. Interestingly, the single-cell transcriptome analysis showed the presence of cells expressing NKG7, a gene involved in granule exocytosis and highly involved in anti-tumor immunity. Single cells expressing as granzyme H, cathepsin-W, and granulysin were also identified. The study of this case suggests that CML was controlled for a long period of time, potentially via an immune surveillance phenomenon. The role of NKG7 expression in the occurrence of treatment-free remissions (TFR) should be evaluated in future studies.

4.
Commun Biol ; 6(1): 269, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36918710

ABSTRACT

Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Mice, Obese , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Obesity/genetics , Insulin/pharmacology , Homeostasis , Anti-Infective Agents/pharmacology
5.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681731

ABSTRACT

Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10-48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.


Subject(s)
Alcohol Dehydrogenase/blood , Biomarkers/blood , Chemical and Drug Induced Liver Injury/metabolism , Proteomics/methods , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/pathology , Chromatography, High Pressure Liquid , Computational Biology , Humans , International Normalized Ratio , Limit of Detection , Tandem Mass Spectrometry
6.
Cell Rep ; 36(7): 109530, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34380018

ABSTRACT

A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.


Subject(s)
COVID-19/virology , DNA, Viral/genetics , Genome, Human , SARS-CoV-2/genetics , Sequence Analysis, DNA , Virus Integration , Aged , Animals , COVID-19/diagnosis , Carcinoma, Hepatocellular/virology , Chlorocebus aethiops , HEK293 Cells , Hepatitis B virus/genetics , Host-Pathogen Interactions , Humans , Liver Neoplasms/virology , Long Interspersed Nucleotide Elements , Male , Nanopore Sequencing , Vero Cells
7.
Mol Cell ; 80(5): 915-928.e5, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33186547

ABSTRACT

Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.


Subject(s)
DNA Methylation , DNA Transposable Elements , DNA, Neoplasm , Epigenesis, Genetic , Epigenome , Gene Expression Regulation, Neoplastic , Long Interspersed Nucleotide Elements , Nanopore Sequencing , Neoplasms , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Female , Gene Expression Profiling , Humans , Middle Aged , Neoplasms/genetics , Neoplasms/metabolism , Organ Specificity
8.
World J Hepatol ; 12(12): 1198-1210, 2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33442448

ABSTRACT

BACKGROUND: Liver reduction is the main curative treatment for primary liver cancer, but its use remains limited as liver regeneration requires a minimum of 30% functional parenchyma. AIM: To study the dynamics of the liver regeneration process and consequent behavior of cell cycle regulators in rats after extended hepatectomy (90%) and postoperative glucose infusions. METHODS: Post-hepatectomy liver failure was triggered in 84 Wistar rats by reducing their liver mass by 90%. The animals received a post-operative glucose infusion and were randomly assigned to two groups: One to investigate the survival rate and the other for biochemical analyses. Animals that underwent laparotomy or 70% hepatectomy were used as controls. Blood and liver samples were collected on postoperative days 1 to 7. Liver morphology, function, and regeneration were studied with histology, immunohistochemistry, and western blotting. RESULTS: Postoperative mortality after major resection reached 20% and 55% in the first 24 h and 48 h, respectively, with an overall total of 70% 7 d after surgery. No apparent signs of apoptotic cell death were detected in the extended hepatectomy rat livers, but hepatocytes displaying a clear cytoplasm and an accumulation of hyaline material testified to changes affecting their functional activities. Liver regeneration started properly, as early events initiating cell proliferation occurred within the first 3 h, and the G1 to S transition was detected in less than 12 h. However, a rise in p27 (Kip1) followed by p21 (Waf1/Cip1) cell cycle inhibitor levels led to a delayed S phase progression and mitosis. Overall, liver regeneration in rats with a 90% hepatectomy was delayed by 24 h and associated with a delayed onset and lower peak magnitude of hepatocellular deoxyribonucleic acid synthesis. CONCLUSION: This work highlights the critical importance of the cyclin/cyclin-dependent kinase inhibitors of the Cip/Kip family in regulating the liver regeneration timeline following extended hepatectomy.

10.
Hepatology ; 72(3): 965-981, 2020 09.
Article in English | MEDLINE | ID: mdl-31875970

ABSTRACT

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a severe malignant tumor in which the standard therapies are mostly ineffective. The biological significance of the desmoplastic tumor microenvironment (TME) of ICC has been stressed but was insufficiently taken into account in the search for classifications of ICC adapted to clinical trial design. We investigated the heterogeneous tumor stroma composition and built a TME-based classification of ICC tumors that detects potentially targetable ICC subtypes. APPROACH AND RESULTS: We established the bulk gene expression profiles of 78 ICCs. Epithelial and stromal compartments of 23 ICCs were laser microdissected. We quantified 14 gene expression signatures of the TME and those of 3 functional indicators (liver activity, inflammation, immune resistance). The cell population abundances were quantified using the microenvironment cell population-counter package and compared with immunohistochemistry. We performed an unsupervised TME-based classification of 198 ICCs (training set) and 368 ICCs (validation set). We determined immune response and signaling features of the different immune subtypes by functional annotations. We showed that a set of 198 ICCs could be classified into 4 TME-based subtypes related to distinct immune escape mechanisms and patient outcomes. The validity of these immune subtypes was confirmed over an independent set of 368 ICCs and by immunohistochemical analysis of 64 ICC tissue samples. About 45% of ICCs displayed an immune desert phenotype. The other subtypes differed in nature (lymphoid, myeloid, mesenchymal) and abundance of tumor-infiltrating cells. The inflamed subtype (11%) presented a massive T lymphocyte infiltration, an activation of inflammatory and immune checkpoint pathways, and was associated with the longest patient survival. CONCLUSION: We showed the existence of an inflamed ICC subtype, which is potentially treatable with checkpoint blockade immunotherapy.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Immunophenotyping/methods , Signal Transduction/immunology , Tumor Microenvironment/immunology , Bile Duct Neoplasms/classification , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/classification , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/immunology , Cholangiocarcinoma/pathology , Drug Discovery , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunity/immunology , Immunohistochemistry , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Prognosis , Transcriptome
11.
Genome Res ; 28(5): 639-653, 2018 05.
Article in English | MEDLINE | ID: mdl-29643204

ABSTRACT

The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Long Interspersed Nucleotide Elements/genetics , Retroelements/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Aged , Aged, 80 and over , Animals , Cell Transformation, Neoplastic/genetics , Female , Humans , Liver/metabolism , Liver/pathology , Male , Mammals/genetics , Mice, Knockout , Middle Aged , Mutagenesis, Insertional , ATP-Binding Cassette Sub-Family B Member 4
12.
Gastroenterology ; 154(4): 1009-1023.e14, 2018 03.
Article in English | MEDLINE | ID: mdl-29133078

ABSTRACT

BACKGROUND & AIMS: Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS: We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS: The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS: Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.


Subject(s)
Bacteria/metabolism , Colitis/prevention & control , Colon/metabolism , Gastrointestinal Microbiome , Hepatocytes/metabolism , Pancreatitis-Associated Proteins/metabolism , Animals , Bacteria/classification , Bacteria/growth & development , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Colon/microbiology , Dextran Sulfate , Disease Models, Animal , Fecal Microbiota Transplantation , Humans , Mice, Inbred C57BL , Mice, Transgenic , Microbial Viability , Oxidative Stress/drug effects , Pancreatitis-Associated Proteins/genetics , Reactive Oxygen Species/metabolism , Time Factors , Trinitrobenzenesulfonic Acid
13.
Talanta ; 170: 473-480, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28501198

ABSTRACT

A major class of clinical biomarkers is constituted of intracellular proteins which are leaking into the blood following ischemia, exposure to toxic xenobiotics or mechanical aggression. Their ectopic presence in plasma/serum is an indicator of tissue damage and raises a warning signal. These proteins, referred to as cytolysis biomarkers, are generally of cytoplasmic origin and as such, are devoid of glycosylation. In contrast, most plasma/serum proteins originate from the hepatic secretory pathway and are heavily glycosylated (at the exception of albumin). Recent advances in targeted proteomics have supported the parallelized evaluation of new blood biomarkers. However, these analytical methods must be combined with prefractionation strategies that reduce the complexity of plasma/serum matrix. In this article, we present the glycodepletion method, which reverses the hydrazide-based glycocapture concept to remove plasma/serum glycoproteins from plasma/serum matrix and facilitates the detection of cytolysis biomarkers. Glycodepletion was integrated to a targeted proteomics pipeline to evaluate 4 liver cytolysis biomarker candidates in the context of acetaminophen-induced acute hepatitis.


Subject(s)
Blood Proteins/isolation & purification , Glycoproteins/isolation & purification , Proteins/analysis , Proteomics/methods , Amino Acid Sequence , Biomarkers/analysis , Biomarkers/blood , Chemical Fractionation/methods , Chromatography, Liquid/methods , Glycoproteins/blood , Glycosylation , Hepatitis/blood , Humans , Tandem Mass Spectrometry/methods
14.
J Virol ; 90(23): 10811-10822, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27681123

ABSTRACT

Hepatitis B virus (HBV) is a major cause of liver diseases, including hepatocellular carcinoma (HCC), and more than 650,000 people die annually due to HBV-associated liver failure. Extensive studies of individual promoters have revealed that heterogeneous RNA 5' ends contribute to the complexity of HBV transcriptome and proteome. Here, we provide a comprehensive map of HBV transcription start sites (TSSs) in human liver, HCC, and blood, as well as several experimental replication systems, at a single-nucleotide resolution. Using CAGE (cap analysis of gene expression) analysis of 16 HCC/nontumor liver pairs, we identify 17 robust TSSs, including a novel promoter for the X gene located in the middle of the gene body, which potentially produces a shorter X protein translated from the conserved second start codon, and two minor antisense transcripts that might represent viral noncoding RNAs. Interestingly, transcription profiles were similar in HCC and nontumor livers, although quantitative analysis revealed highly variable patterns of TSS usage among clinical samples, reflecting precise regulation of HBV transcription initiation at each promoter. Unlike the variety of TSSs found in liver and HCC, the vast majority of transcripts detected in HBV-positive blood samples are pregenomic RNA, most likely generated and released from liver. Our quantitative TSS mapping using the CAGE technology will allow better understanding of HBV transcriptional responses in further studies aimed at eradicating HBV in chronic carriers. IMPORTANCE: Despite the availability of a safe and effective vaccine, HBV infection remains a global health problem, and current antiviral protocols are not able to eliminate the virus in chronic carriers. Previous studies of the regulation of HBV transcription have described four major promoters and two enhancers, but little is known about their activity in human livers and HCC. We deeply sequenced the HBV RNA 5' ends in clinical human samples and experimental models by using a new, sensitive and quantitative method termed cap analysis of gene expression (CAGE). Our data provide the first comprehensive map of global TSS distribution over the entire HBV genome in the human liver, validating already known promoters and identifying novel locations. Better knowledge of HBV transcriptional activity in the clinical setting has critical implications in the evaluation of therapeutic approaches that target HBV replication.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Liver Neoplasms/virology , Promoter Regions, Genetic , Adult , Aged , Animals , Chromosome Mapping , Female , Genome, Viral , Hep G2 Cells , Hepatitis B virus/pathogenicity , Humans , Liver/virology , Male , Mice , Middle Aged , RNA Caps/genetics , RNA, Viral/genetics , Transcription Initiation Site , Transcriptome
15.
PLoS One ; 11(3): e0150733, 2016.
Article in English | MEDLINE | ID: mdl-26983031

ABSTRACT

OBJECTIVE: No efficient medical treatment is available for severe acute hepatitis (SAH) except N-acetylcysteine for acetaminophen-induced acute liver failure. The human C-type lectin Reg3α, referred to as ALF-5755, improved survival in an animal model of acute liver failure and was well tolerated in a phase 1 trial in humans. We performed a phase 2a trial of ALF5755 in non-acetaminophen induced SAH. DESIGN: double-blind, randomized, placebo-controlled study. The primary end-point was the improvement in the coagulation protein synthesis assessed by the change of Prothrombin (PR) during the 72 hours following treatment initiation calculated as PRH0 minus PRH72 divided by 72 (PR slope H0H72). Intention to treat (ITT) and per-protocol (PP) analysis of the entire group and the Hepatitis B virus (HBV)/AIH (auto-immune hepatitis) sub-group were done separately. RESULTS: 57 patients were included. Twenty-eight received ALF-5755, 29 the placebo. Etiologies were: Hepatitis A (n = 10), HBV (n = 13), AIH (n = 9), drug-induced (n = 8), other (n = 17). On the whole group, nor the PR slope H0H72 (0.18±0.31 vs 0.25±0.32), nor the transplant-free survival rate at day 21 (75 vs 86%) differed between groups. Conversely, in the HBV-AIH subgroup, in which ALF was more severe, PR slope H0-H72 was higher in the ALF-5755 arm, the difference being significant in PP analysis (0.048±0.066 vs -0.040±0.099, p = 0.04); the median length of hospitalization was lower in the ALF-5755 group (8 vs 14 days, p = 0.02). CONCLUSION: ALF-5755 was not efficient in a ITT analysis performed on the whole sample; however it led to a significant, although moderate, clinical benefit in a PP analysis of the sub-group of patients with HBV or AIH related SAH. As HBV is the major cause of SAH in Asia and Africa and AIH a growing cause, this study emphasizes the need to pursuit the evaluation of this novel medical treatment of SAH. TRIAL REGISTRATION: ClinicalTrials.gov NCT01318525.


Subject(s)
Antigens, Neoplasm/therapeutic use , Antioxidants/therapeutic use , Biomarkers, Tumor/therapeutic use , Extracellular Matrix/drug effects , Lectins, C-Type/therapeutic use , Liver Diseases/drug therapy , Recombinant Proteins/therapeutic use , Acute Disease , Adult , Antigens, Neoplasm/adverse effects , Antigens, Neoplasm/pharmacology , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Area Under Curve , Biomarkers, Tumor/adverse effects , Biomarkers, Tumor/pharmacokinetics , Biomarkers, Tumor/pharmacology , Double-Blind Method , Female , Humans , Male , Middle Aged , Pancreatitis-Associated Proteins , Placebos , Prognosis , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology
17.
Genome Res ; 25(12): 1812-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26510915

ABSTRACT

An increasing number of noncoding RNAs (ncRNAs) have been implicated in various human diseases including cancer; however, the ncRNA transcriptome of hepatocellular carcinoma (HCC) is largely unexplored. We used CAGE to map transcription start sites across various types of human and mouse HCCs with emphasis on ncRNAs distant from protein-coding genes. Here, we report that retroviral LTR promoters, expressed in healthy tissues such as testis and placenta but not liver, are widely activated in liver tumors. Despite HCC heterogeneity, a subset of LTR-derived ncRNAs were more than 10-fold up-regulated in the vast majority of samples. HCCs with a high LTR activity mostly had a viral etiology, were less differentiated, and showed higher risk of recurrence. ChIP-seq data show that MYC and MAX are associated with ncRNA deregulation. Globally, CAGE enabled us to build a mammalian promoter map for HCC, which uncovers a new layer of complexity in HCC genomics.


Subject(s)
Carcinoma, Hepatocellular/etiology , Gene Expression Profiling , Liver Neoplasms/etiology , Promoter Regions, Genetic , RNA, Untranslated/genetics , Terminal Repeat Sequences , Transcription Initiation Site , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Viral , Computational Biology/methods , Disease Models, Animal , Disease Progression , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Mice , Mice, Knockout , Protein Binding , Transcription Factors/metabolism , Transcriptome , ATP-Binding Cassette Sub-Family B Member 4
19.
PLoS One ; 10(5): e0125584, 2015.
Article in English | MEDLINE | ID: mdl-25938566

ABSTRACT

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rapidly progressive heterogeneous illness with high mortality rate and no widely accessible cure. A promising drug candidate according to previous preclinical studies is the Reg3α (or HIP/PAP) lectin, which alleviates ALF through its free-radical scavenging activity. Here we study the therapeutic targets of Reg3α in order to gain information on the nature of the oxidative stress associated with ALF. METHODS: Primary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF. RESULTS: Fibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α. CONCLUSIONS: Reg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Extracellular Space/metabolism , Lectins, C-Type/metabolism , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Oxidative Stress , Adult , Aged , Animals , Cells, Cultured , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Fibrin/metabolism , Hepatocytes/metabolism , Humans , Male , Mice, Inbred C57BL , Middle Aged , Models, Biological , Pancreatitis-Associated Proteins , fas Receptor/metabolism
20.
Ann Clin Transl Neurol ; 1(10): 739-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25493266

ABSTRACT

OBJECTIVES: Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. METHODS: We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. RESULTS: HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. INTERPRETATION: HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...