Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1390144, 2024.
Article in English | MEDLINE | ID: mdl-38685963

ABSTRACT

When exposed to low temperatures, plants undergo a drastic reprogramming of their transcriptome in order to adapt to their new environmental conditions, which primes them for potential freezing temperatures. While the involvement of transcription factors in this process, termed cold acclimation, has been deeply investigated, the potential contribution of chromatin regulation remains largely unclear. A large proportion of cold-inducible genes carries the repressive mark histone 3 lysine 27 trimethylation (H3K27me3), which has been hypothesized as maintaining them in a silenced state in the absence of stress, but which would need to be removed or counteracted upon stress perception. However, the fate of H3K27me3 during cold exposure has not been studied genome-wide. In this study, we offer an epigenome profiling of H3K27me3 and its antagonistic active mark H3K4me3 during short-term cold exposure. Both chromatin marks undergo rapid redistribution upon cold exposure, however, the gene sets undergoing H3K4me3 or H3K27me3 differential methylation are distinct, refuting the simplistic idea that gene activation relies on a switch from an H3K27me3 repressed chromatin to an active form enriched in H3K4me3. Coupling the ChIP-seq experiments with transcriptome profiling reveals that differential histone methylation only weakly correlates with changes in expression. Interestingly, only a subset of cold-regulated genes lose H3K27me3 during their induction, indicating that H3K27me3 is not an obstacle to transcriptional activation. In the H3K27me3 methyltransferase curly leaf (clf) mutant, many cold regulated genes display reduced H3K27me3 levels but their transcriptional activity is not altered prior or during a cold exposure, suggesting that H3K27me3 may serve a more intricate role in the cold response than simply repressing the cold-inducible genes in naïve conditions.

2.
Plant Environ Interact ; 5(2): e10137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38482131

ABSTRACT

Leaves are colonized by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognized as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray inoculated with six diverse leaf-colonizing bacteria. The transcriptomic changes in leaves were tracked over time and significant changes in ethylene marker (ARL2) expression were observed only 2-4 days after spray inoculation. Whole-transcriptome sequencing revealed that 4 days after inoculation, leaf transcriptional changes to colonization by nonpathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the nonpathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers resulted in disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defense. An in silico epigenetic analysis of the data was congruent with the transcriptomic analysis. These findings suggest (1) that plant responses are not rapid after spray inoculation, (2) that plant responses only differ in strength, and (3) that plants respond to high titers of nonpathogenic bacteria with pathogen-like responses.

3.
J Exp Bot ; 74(6): 1770-1783, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36656009

ABSTRACT

Chromatin is an essential contributor to the regulation of transcription. The two histone post-translational modifications H3K4me3 and H3K27me3 act as an activator and repressor of gene expression, respectively, and are usually described as being mutually exclusive. However, recent work revealed that both marks might co-exist at several loci, forming a distinctive chromatin state called bivalency. While this state has been detected on a handful of genes involved in plant development and stress responses, its role in the regulation of transcription remains unclear. In an effort to shed more light on the putative function(s) of bivalency in plants, this review details the potential players involved in its setting and reading, and explores how this chromatin state might contribute to the control of gene expression. We propose that bivalency maintains transcriptional plasticity by facilitating transitions between a repressed and an active state and/or by preventing irreversible silencing of its targets. We also highlight recently developed techniques that could be used for further investigating bivalency.


Subject(s)
Chromatin , Epigenesis, Genetic , Chromatin/genetics
4.
J Exp Bot ; 73(8): 2385-2402, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35045165

ABSTRACT

Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied. To this end, we report the genome-wide dynamics of H3K27me3 levels during FM arrest and the consequences of strongly depleted PcG activity on early flower morphogenesis including enlarged and indeterminate FMs. Strong depletion of H3K27me3 levels results in misexpression of the FM identity gene AGL24, which partially causes floral reversion leading to ap1-like flowers and indeterminate FMs ectopically expressing WUS and SHOOT MERISTEMLESS (STM). Loss of STM can rescue supernumerary floral organs and FM indeterminacy in H3K27me3-deficient flowers, indicating that the hyperactivity of the FMs is at least partially a result of ectopic STM expression. Nonetheless, WUS remained essential for the FM activity. Our results demonstrate that PcG proteins promote FM determinacy at multiple levels of the floral gene regulatory network, silencing initially floral regulators such as AGL24 that promotes FM indeterminacy and, subsequently, meristematic pluripotency genes such as WUS and STM during FM arrest.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Histones/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Meristem/genetics , Meristem/metabolism
5.
Front Plant Sci ; 11: 39, 2020.
Article in English | MEDLINE | ID: mdl-32117378

ABSTRACT

Chromatin regulation ensures stable repression of stress-inducible genes under non-stress conditions and transcriptional activation and memory of stress-related genes after stress exposure. However, there is only limited knowledge on how chromatin genes are regulated at the transcriptional and post-transcriptional level upon stress exposure and relief from stress. We reveal that the repressive modification histone H3 lysine 27 trimethylation (H3K27me3) targets genes which are quickly activated upon cold exposure, however, H3K27me3 is not necessarily lost during a longer time in the cold. In addition, we have set-up a quantitative reverse transcription polymerase chain reaction-based platform for high-throughput transcriptional profiling of a large set of chromatin genes. We find that the expression of many of these genes is regulated by cold. In addition, we reveal an induction of several DNA and histone demethylase genes and certain histone variants after plants have been shifted back to ambient temperature (deacclimation), suggesting a role in the memory of cold acclimation. We also re-analyze large scale transcriptomic datasets for transcriptional regulation and alternative splicing (AS) of chromatin genes, uncovering an unexpected level of regulation of these genes, particularly at the splicing level. This includes several vernalization regulating genes whose AS may result in cold-regulated protein diversity. Overall, we provide a profiling platform for the analysis of chromatin regulatory genes and integrative analyses of their regulation, suggesting a dynamic regulation of key chromatin genes in response to low temperature stress.

6.
Plant Cell Environ ; 42(3): 762-770, 2019 03.
Article in English | MEDLINE | ID: mdl-29920687

ABSTRACT

For successful growth and development, plants constantly have to gauge their environment. Plants are capable to monitor their current environmental conditions, and they are also able to integrate environmental conditions over time and store the information induced by the cues. In a developmental context, such an environmental memory is used to align developmental transitions with favourable environmental conditions. One temperature-related example of this is the transition to flowering after experiencing winter conditions, that is, vernalization. In the context of adaptation to stress, such an environmental memory is used to improve stress adaptation even when the stress cues are intermittent. A somatic stress memory has now been described for various stresses, including extreme temperatures, drought, and pathogen infection. At the molecular level, such a memory of the environment is often mediated by epigenetic and chromatin modifications. Histone modifications in particular play an important role. In this review, we will discuss and compare different types of temperature memory and the histone modifications, as well as the reader, writer, and eraser proteins involved.


Subject(s)
Adaptation, Physiological , Chromatin/physiology , Plant Physiological Phenomena , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Plant Physiological Phenomena/genetics , Stress, Physiological/genetics , Stress, Physiological/physiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...