Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 234: 122646, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364455

ABSTRACT

In this work, a novel strategy was addressed to fabricate new sensing probe (N-CDs@NaFZ) from nitrogen doped carbon dots (N-CDs) confined in Al-free ferrisilicates zeolite (NaFZ) by hydrothermal/solvothermal method. The probe was systematically characterized by HR-TEM, FTIR, energy dispersive X-ray (EDX), powder X-ray diffraction, and UV-Vis absorption and fluorescence spectrophotometers. Characterization of the designed nanocomposite template N-CDs@NaFZ by fluorescence spectrum demonstrates a variety of important conducts as stability improvements, reasonable dispersibility in water, highly emission intensity enhancement at 435 nm when excited at 340 nm, excitation independent fluorescence behaviors, great quantum yield percentage of 91.2%, and narrow size distribution 12 nm, as a nano-space confinement effect of zeolite effectively increase the rigidity of N-CDs. Based on the fluorescence quenching mechanism, the designed approach exhibits an excellent selectivity and good sensitive response to the presence of Hg(II) ions under ambient temperature, with a wide linear range of 0.1-1500 nM and lower detection limits of 5.5 pM. Influences of variables pH and incubation time were optimized. The N-CDs@NaFZ sensor was effectively applied for the detection of Hg(II) ions in the farmed and wild rainbow trout fishes, and the results are in reasonable agreement when compared with that obtained by the cold vapor atomic absorption method.


Subject(s)
Mercury , Quantum Dots , Zeolites , Animals , Carbon , Fishes , Fluorescent Dyes , Nitrogen , Spectrometry, Fluorescence
2.
RSC Adv ; 10(48): 28865-28871, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520044

ABSTRACT

A novel strategy is reported for highly sensitive, rapid, and selective detection of nuclear matrix protein NMP22 using two-color quantum dots based on fluorescence resonance energy transfer (FRET). Quantum dots (QDs) are highly advantageous for biological imaging and analysis, particularly when combined with (FRET) properties of semiconductor quantum dot (QDs) are ideal for biological analysis to improve sensitivity and accuracy. In this FRET system narrowly dispersed green emitting quantum dot CdTe core is used as a donor and labelled by monoclonal (mAb) antibody, while orange emitting quantum dot CdTe/CdS core shell is used as an accepter and labelled by polyclonal (pAb) antibody. The quantum dots are labelled by antibodies using EDC/NHS as crosslinking agent. Bovine serum albumin (BSA) solution was added to block nonspecific binding sites. The fluorescence intensity of QDs accepter decreased linearly with the increasing concentrations of NMP22 from 2-22 pg mL-1 due to FRET system and fluoroimmunoassay reaction. This method has good regression coefficient (R 2 = 0.998) and detection limit was 0.05 pg mL-1. The proposed FRET-based immunosensor provides a quick, simple and sensitive immunoassay tool for protein detection, and can be considered as a promising approach for clinical applications. The proposed FRET-based immunosensor provides a quick, simple and sensitive immunoassay tool for protein detection, and can be considered as a promising approach for clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...