Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 374: 131650, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34915364

ABSTRACT

This study investigated structural changes and the in vivo retention in the oral cavity of heated whey protein concentrate (WPC). Heated WPC was shown to have both a higher retention time in the oral cavity compared to unheated whey protein up to 1 min post swallow, and a concomitant increase in free thiol concentration. Nuclear magnetic resonance and circular dichroism demonstrated structural changes in the secondary and tertiary structures of the WPC upon heating. Structural loss of the ß-barrel was shown to increase during heating, leading to the exposure of hydrophobic regions. The increase in free thiols and hydrophobic regions are two factors which are known to increase mucoadhesive strength and hence increase oral retention of heated whey protein which may subsequently increase the perception of mouthdrying.


Subject(s)
Hot Temperature , Mouth , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Milk Proteins , Whey Proteins
2.
Foods ; 10(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34574175

ABSTRACT

Mouthdrying is commonly associated with whey protein fortified products. Therefore, mitigating strategies could be key to reducing mouthdrying and maximising the benefits from such products. Currently, few studies have successfully mitigated whey protein derived mouthdrying and this paper aims to investigate different strategies to reduce mouthdrying effects. Accordingly, a series of experiments were carried out with a trained sensory panel (n = 11). Two different whey protein food matrices were tested: (a) whey protein beverages (WPB) varying in lactose (0.05-12.4% w/v) and fat (0.9-7.2% w/v) levels and (b) whey protein fortified snacks: cupcakes with differing whey protein concentrate (WPC) powders (standard and heat-stable) and scones with varying fat content (with and without cream topping). Overall results suggested the tested strategies had limited significant effects on whey protein derived mouthdrying. Increasing lactose (9.4% w/v) in WPBs and fat levels (via cream topping) on scones significantly suppressed mouthdrying. However, all other tested strategies (increasing fat in WPBs and heat-stable WPC in cupcakes) had no significant effect on suppressing perceived mouthdrying. This work demonstrates the challenges with mitigating whey protein derived mouthdrying; however, cross-modal taste suppression and increasing lubrication warrant further investigation.

3.
Food Qual Prefer ; 56(Pt B): 233-240, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28260840

ABSTRACT

Whey proteins are becoming an increasingly popular functional food ingredient. There are, however, sensory properties associated with whey protein beverages that may hinder the consumption of quantities sufficient to gain the desired nutritional benefits. One such property is mouth drying. The influence of protein structure on the mouthfeel properties of milk proteins has been previously reported. This paper investigates the effect of thermal denaturation of whey proteins on physicochemical properties (viscosity, particle size, zeta-potential, pH), and relates this to the observed sensory properties measured by qualitative descriptive analysis and sequential profiling. Mouthcoating, drying and chalky attributes built up over repeated consumption, with higher intensities for samples subjected to longer heating times (p < 0.05). Viscosity, pH, and zeta-potential were found to be similar for all samples, however particle size increased with longer heating times. As the pH of all samples was close to neutral, this implies that neither the precipitation of whey proteins at low pH, nor their acidity, as reported in previous literature, can be the drying mechanisms in this case. The increase in mouth drying with increased heating time suggests that protein denaturation is a contributing factor and a possible mucoadhesive mechanism is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...