Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38308067

ABSTRACT

Helicobacter pylori infection is the major risk factor associated with the development of gastric cancer. Currently, administration of standard antibiotic therapy combined with probiotics and postbiotics has gained significant attention in the management of H. pylori infection. In this work, the immunomodulatory effects of Lactobacillus crispatus-derived extracellular vesicles (EVs) and cell-free supernatant (CFS) were investigated on H. pylori-induced inflammatory response in human gastric adenocarcinoma (AGS) cells. L. crispatus-derived EVs were isolated by ultracentrifugation and physically characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the protein content of L. crispatus-derived EVs was also evaluated by SDS-PAGE. Cell viability of AGS cells exposed to varying concentrations of EVs and CFS was assessed by MTT assay. The mRNA expression of IL-1ß, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR. ELISA was used for the measurement of IL-8 production in AGS cells. In addition, EVs (50 µg/mL) and CFS modulated the H. pylori-induced inflammation by downregulating the mRNA expression of IL-1ß, IL-6, IL-8, and TNF-α, and upregulating the expression of IL-10, and TGF-ß genes in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with L. crispatus-derived EVs and CFS. In conclusion, our observation suggests for the first time that EVs released by L. crispatus strain RIGLD-1 and its CFS could be recommended as potential therapeutic agents against H. pylori-triggered inflammation.

3.
Heliyon ; 9(9): e19607, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810022

ABSTRACT

Over time, mounting evidence has demonstrated extra-gastric manifestations of Helicobacter pylori infection. As such, a number of studies demonstrated the potential contribution of H. pylori infection to the incidence and progression of Alzheimer's disease (AD). Considering unanswered questions regarding the effect of H. pylori infection on brain activity, we sought to investigate the impact of H. pylori infection on the expression of AD-associated risk factors. We used two H. pylori clinical strains obtained from two patients with peptic ulcer and evaluated their influence on the expression level of AD-associated genes (APP, ApoE2, ApoE4, ABCA7, BIN1, Clu, CD33) and genes for inflammatory markers (TLR-4, IL-8, TNF-α) by RT-qPCR in human glioblastoma (U87MG) and astrocyte (1321N1) cell lines. The expression of inflammatory cytokines was further assessed by ELISA assay. The exposure of U97MG and 1321N1 cells to H. pylori strains resulted in a significant enhancement in the expression level of the risk allele ApoE4, while reducing the expression of the protective allele ApoE2. H. pylori infection remarkably increased the expression level of main AD-associated risk genes, and also pro-inflammatory cytokines. Furthermore, we noticed a substantial elevation in the mRNA expression level of transmembrane receptor TLR-4 following H. pylori infection. Our findings presented the potential for H. pylori to stimulate the expression of AD-associated risk genes and trigger neuroinflammation in the brain tissue. This, in principle, leads to the recommendation that AD patients should perhaps test for H. pylori infection and receive treatments upon positive detection.

4.
Microorganisms ; 11(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37513022

ABSTRACT

The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.

5.
Mol Biol Rep ; 50(8): 6795-6805, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392285

ABSTRACT

BACKGROUND: Helicobacter pylori infection is considered as the major risk factor for gastric adenocarcinoma. Today, the increasing emergence of antibiotic-resistant strains has drastically decreased the eradication rate of H. pylori infection. This study was aimed to investigate the inhibitory and modulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on H. pylori adhesion, invasion, and inflammatory response in AGS cell line. METHODS AND RESULTS: The probiotic potential and properties of L. crispatus were evaluated using several functional and safety tests. Cell viability of AGS cells exposed to varying concentrations of live and pasteurized L. crispatus was assessed by MTT assay. The adhesion and invasion abilities of H. pylori exposed to either live or pasteurized L. crispatus were examined by gentamycin protection assay. The mRNA expression of IL-1ß, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR from coinfected AGS cells. ELISA was used for the detection of IL-8 secretion from treated cells. Both live and pasteurized L. crispatus significantly decreased H. pylori adhesion/invasion to AGS cells. In addition, both live and pasteurized L. crispatus modulated H. pylori-induced inflammation by downregulating the mRNA expression of IL-1ß, IL-6, IL-8, and TNF-α and upregulating the expression of IL-10, and TGF-ß cytokines in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with live and pasteurized L. crispatus. CONCLUSIONS: In conclusion, our findings demonstrated that live and pasteurized L. crispatus strain RIGLD-1 are safe, and could be suggested as a potential probiotic candidate against H. pylori colonization and inflammation.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Lactobacillus crispatus , Humans , Interleukin-10/metabolism , Lactobacillus crispatus/genetics , Lactobacillus crispatus/metabolism , Helicobacter pylori/genetics , Interleukin-8/genetics , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Inflammation/metabolism , Epithelial Cells/metabolism , RNA, Messenger/metabolism , Gastric Mucosa/metabolism
6.
Front Cell Infect Microbiol ; 12: 953718, 2022.
Article in English | MEDLINE | ID: mdl-36046747

ABSTRACT

The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Carcinogenesis , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Homeostasis , Humans , Immune System
SELECTION OF CITATIONS
SEARCH DETAIL
...