Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(20): 24023-24033, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37188328

ABSTRACT

Precise manipulation of (sub)micron particles is key for the preparation, enrichment, and quality control in many biomedical applications. Surface acoustic waves (SAW) hold tremendous promise for manipulation of (bio)particles at the micron to nanoscale ranges. In commonly used SAW tweezers, particle manipulation relies on the direct acoustic radiation effect whose superior performance fades rapidly when progressing from micron to nanoscale particles due to the increasing dominance of a second order mechanism, termed acoustic streaming. Through reproducible and high-precision realization of stiff microchannels to reliably actuate the microchannel cross-section, here we introduce an approach that allows the otherwise competing acoustic streaming to complement the acoustic radiation effect. The synergetic effect of both mechanisms markedly enhances the manipulation of nanoparticles, down to 200 nm particles, even at relatively large wavelength (300 µm). Besides spherical particles ranging from 0.1 to 3 µm, we show collections of cells mixed with different sizes and shapes inherently existing in blood including erythrocytes, leukocytes, and thrombocytes.


Subject(s)
Nanoparticles , Sound , Humans , Acoustics , Blood Cells , Erythrocytes
2.
Mater Horiz ; 8(2): 515-524, 2021 02 01.
Article in English | MEDLINE | ID: mdl-34821267

ABSTRACT

Nanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters.


Subject(s)
Nanostructures , Electric Conductivity , Electricity , Nanotechnology , Sound
4.
Sci Rep ; 11(1): 2948, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536450

ABSTRACT

Mass spectrometry coupled to low-temperature plasma ionization (LTPI) allows for immediate and easy analysis of compounds from the surface of a sample at ambient conditions. The efficiency of this process, however, strongly depends on the successful desorption of the analyte from the surface to the gas phase. Whilst conventional sample heating can improve analyte desorption, heating is not desirable with respect to the stability of thermally labile analytes. In this study using aromatic amines as model compounds, we demonstrate that (1) surface acoustic wave nebulization (SAWN) can significantly improve compound desorption for LTPI without heating the sample. Furthermore, (2) SAWN-assisted LTPI shows a response enhancement up to a factor of 8 for polar compounds such as aminophenols and phenylenediamines suggesting a paradigm shift in the ionization mechanism. Additional assets of the new technique demonstrated here are (3) a reduced analyte selectivity (the interquartile range of the response decreased by a factor of 7)-a significant benefit in non-targeted analysis of complex samples-and (4) the possibility for automated online monitoring using an autosampler. Finally, (5) the small size of the microfluidic SAWN-chip enables the implementation of the method into miniaturized, mobile LTPI probes.

5.
Lab Chip ; 19(24): 4043-4051, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31723953

ABSTRACT

The ability to separate specific biological components from cell suspensions is indispensable for liquid biopsies, and for personalized diagnostics and therapy. This paper describes an advanced surface acoustic wave (SAW) based device designed for the enrichment of platelets (PLTs) from a dispersion of PLTs and red blood cells (RBCs) at whole blood concentrations, opening new possibilities for diverse applications involving cell manipulation with high throughput. The device is made of patterned SU-8 photoresist that is lithographically defined on the wafer scale with a new proposed methodology. The blood cells are initially focused and subsequently separated by an acoustic radiation force (ARF) applied through standing SAWs (SSAWs). By means of flow cytometric analysis, the PLT concentration factor was found to be 7.7, and it was proven that the PLTs maintain their initial state. A substantially higher cell throughput and considerably lower applied powers than comparable devices from literature were achieved. In addition, fully coupled 3D numerical simulations based on SAW wave field measurements were carried out to anticipate the coupling of the wave field into the fluid, and to obtain the resulting pressure field. A comparison to the acoustically simpler case of PDMS channel walls is given. The simulated results show an ideal match to the experimental observations and offer the first insights into the acoustic behavior of SU-8 as channel wall material. The proposed device is compatible with current (Lab-on-a-Chip) microfabrication techniques allowing for mass-scale, reproducible chip manufacturing which is crucial to push the technology from lab-based to real-world applications.


Subject(s)
Blood Platelets/cytology , Cell Separation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Microfluidics , Sound , Cell Separation/instrumentation , Cell Separation/methods , Erythrocytes/cytology , Humans
6.
Anal Chem ; 91(12): 7538-7545, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31099234

ABSTRACT

A novel, on-demand microfluidic droplet merging mechanism is presented in this paper. We demonstrate that a narrow beam surface acoustic wave, targeted at the oil buffer, causes nearby surfactant-stabilized droplets to coalesce. The lack of direct exposure of the droplet to the excitation stimulus makes this method ideal for sensitive samples as harm will not occur. This powerful technique works on a straight channel with no special design, is not affected by surfactant concentration and droplet volume hence promises seamless integration into existing microfluidic systems. It offers high-throughput, biologically safe, on-demand droplet merging for applications ranging from fast reaction kinetics to microfluidic high throughput screening. We thoroughly characterize the physical mechanism triggering droplet-droplet coalescence and observe a cutoff distance from the center of the acoustic beam to the droplet-droplet interface after which the merging mechanism does not work anymore. We establish that the most likely mechanism for merging is acoustic streaming induced droplet deformation.

7.
Lab Chip ; 18(24): 3926-3938, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30474095

ABSTRACT

The use of travelling surface acoustic waves (TSAW) in a microfluidic system provides a powerful tool for the manipulation of particles and cells. In a TSAW driven system, acoustophoretic effects can cause suspended micro-objects to display three distinct responses: (1) swirling, driven by acoustic streaming forces, (2) migration, driven by acoustic radiation forces and (3) patterning in a spatially periodic manner, resulting from diffraction effects. Whilst the first two phenomena have been widely discussed in the literature, the periodic patterning induced by TSAW has only recently been reported and is yet to be fully elucidated. In particular, more in-depth understanding of the size-dependant nature of this effect and the factors involved are required. Herein, we present an experimental and numerical study of the transition in acoustophoretic behaviour of particles influenced by relative dominance of these three mechanisms and characterise it based on particle diameter, channel height, frequency and intensity of the TSAW driven microfluidic system. This study will enable better understanding of the performance of TSAW sorters and allow the development of TSAW systems for particle collection and patterning.

8.
Lab Chip ; 18(15): 2214-2224, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29942943

ABSTRACT

Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.

9.
Lab Chip ; 16(18): 3515-23, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27458086

ABSTRACT

Surface acoustic wave (SAW) based particle manipulation is contactless, versatile, non-invasive and biocompatible making it useful for biological studies and diagnostic technologies. In this work, we present a sensitive particle sorting system, termed the virtual membrane, in which a periodic acoustic field with a wavelength on the order of particle dimensions permits size-selective filtration. Polystyrene particles that are larger than approximately 0.3 times the acoustic half-wavelength experience a force repelling them from the acoustic field. If the particle size is such that, at a given acoustic power and flow velocity, this repulsive force is dominant over the drag force, these particles will be prohibited from progressing further downstream (i.e. filtered), while smaller particles will be able to pass through the force field along the pressure nodes (akin to a filter's pores). Using this mechanism, we demonstrate high size selectivity using a standing SAW generated by opposing sets of focused interdigital transducers (FIDTs). The use of FIDTs permits the generation of a highly localized standing wave field, here used for filtration in µl min(-1) order flow rates at 10s of mW of applied power. Specifically, we demonstrate the filtration of 8 µm particles from 5 µm particles and 10.36 µm particles from 7.0 µm and 5.0 µm particles, using high frequency SAW at 258 MHz, 192.5 MHz, and 129.5 MHz, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...