Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 396: 114996, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32278510

ABSTRACT

Antineoplastic drugs cause severe cytotoxicity for normal cells, especially hematopoietic stem cells (HSCs). However, bleomycin (BLM) is glycopeptide antibiotic that is effective on various cancers and has either low or no myelosuppression effects. The aim of the present study was to investigate the effect of BLM on 5-Azacitidine (5-AZA) induced cytotoxicity in bone marrow HSCs. 5-AZA reduced HSC cell viability in a time and dose-dependent manner with an IC50 value of 16 µM. However, pretreatment of the cells with BLM for 4 h induced an antagonistic cytotoxicity with an increased IC50 of 64 µM. 5-AZA decreased the colony formation ability of HSC cells in semi-solid agar culture and this effect was attenuated by BLM. 5-AZA significantly downregulated high mobility group Box1 (HMGB1) and Bcl-2 gene expression but upregulated Bax gene expression, while BLM impeded the action of 5-AZA. Pretreatment with BLM remarkably decreased HMGB1 release into culture media that was induced by 5-AZA. The cells were distribution at the sub/G1 phase. Annexin/PI staining of the cells, poly (ADP-ribose) polymerase (PARP) cleavage, and anion superoxide production indicated that BLM limited 5-AZA induced apoptotic cell death. In conclusion, BLM in combination with 5-AZA effectively reduces the adverse cytotoxic effects of 5-AZA on bone marrow hematopoietic stem cells, providing a new chemotherapeutic strategy.


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis/drug effects , Azacitidine/toxicity , Bleomycin/pharmacology , HMGB1 Protein/metabolism , Hematopoietic Stem Cells/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , bcl-2-Associated X Protein/metabolism , Animals , Azacitidine/antagonists & inhibitors , Dose-Response Relationship, Drug , Gene Expression/drug effects , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...