Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell J ; 24(1): 28-35, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35182062

ABSTRACT

OBJECTIVE: One of the severe complications and well-known sources of end stage renal disease (ESRD) from diabetes mellitus is diabetic nephropathy (DN). Exosomes secreted from diverse cells are one of the novel encouraging therapies for chronic renal injuries. In this study, we assess whether extracted exosomes from kidney tubular cells (KTCs) could prevent early stage DN in vivo. MATERIALS AND METHODS: In this experimental, exosomes from conditioned medium of rabbit KTCs (RK13) were purified by ultracentrifuge procedures. The exosomes were assessed in terms of morphology and size, and particular biomarkers were evaluated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Western blot, atomic force microscopy (AFM) and Zetasizer Nano analysis. The rats were divided into four groups: DN, control, DN treated with exosomes and sham. First, diabetes was induced in the rats by intraperitoneial (i.p.) administration of streptozotocin (STZ, 50 mg/kg body weight). Then, the exosomes were injected each week into their tail vein for six weeks. We measured 24-hour urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) levels with detection kits. The histopathological effects of the exosomes on kidneys were evaluated by periodic acid-Schiff (PAS) staining and expressions of miRNA-29a and miRNA-377 by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The KTC-Exos were approximately 50-150 nm and had a spherical morphology. They expressed the CD9 and CD63 specific markers. Intravenous injections of KTC-Exos potentially reduced urine volume (P<0.0001), and 24- hour protein (P<0.01), BUN (P<0.001) and Scr (P<0.0001) levels. There was a decrease in miRNA-377 (P<0.01) and increase in miRNA-29a (P<0.001) in the diabetic rats. KTC-Exos ameliorated the renal histopathology with regulatory changes in microRNAs (miRNA) expressions. CONCLUSION: KTC-Exos plays a role in attenuation of kidney injury from diabetes by regulating the miRNAs associated with DN.

2.
Adv Biomed Res ; 11: 119, 2022.
Article in English | MEDLINE | ID: mdl-36798914

ABSTRACT

Background: Diabetic nephropathy (DN) is a critical complication of diabetes mellitus. This study evaluates whether administration of conditioned medium from kidney tubular cells (KTCs-CM) has the ability to be efficacious as an alternative to cell-based therapy for DN. Materials and Methods: CM of rabbit kidney tubular cells (RK13; KTCs) has been collected and after centrifugation, filtered with 0.2 filters. Four groups of rats have been utilized, including control, DN, DN treated with CM, and sham group. After diabetes induction by streptozotocin (50 mg/kg body weight) in rats, 0.8 ml of the CM was injected to each rat three times per day for 3 consecutive days. Then, 24-h urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) have been measured through detection kits. The histopathological effects of CM on kidneys were evaluated by periodic acid-Schiff staining and the expression of microRNAs (miRNAs) 29a and 377 by using the real-time polymerase chain reaction. The expression of aquapurin-1 (AQP1) protein was also examined by Western blotting. Results: Intravenous injections of KTCs-CM significantly reduced the urine volume, protein 24-h, BUN, and Scr, decreased the miRNA-377, and increased miRNA-29a and AQP1 in DN treated with CM rats. Conclusion: KTCs-CM may have the potential to prevent kidney injury from diabetes by regulating the microRNAs related to DN and improving the expression of AQP1.

3.
JBRA Assist Reprod ; 24(4): 428-435, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32550655

ABSTRACT

OBJECTIVES: This study was performed to investigate the protective effects of taurine (2-aminoethanesulfonic acid, TAU) on oxidative stress in the isolated mouse testicular mitochondria, mitochondrial membrane potential (MMP), viability and motility of the exposed sperms to the BPA. METHODS: We treated epididymal spermatozoa obtained from mice and isolated mouse testicular mitochondria with BPA (0.8 mmol/mL) and various doses of TAU (5, 10, 30 and 50 µmol/L). We used the MTT assay and Rhodamine 123 uptake to assess sperm viability and MMP. We assessed the oxidative stress through measuring ROS (reactive oxygen species), MDA (malondialdehyde), GSH (glutathione), and SOD (super-oxide dismutase) levels in the testicular mitochondrial tissue. RESULTS: BPA significantly elevated ROS, MDA and MMP levels, and markedly reduced SOD and GSH levels in the isolated mitochondria. BPA also considerably impaired spermatozoa viability and motility. Pretreatment with 30 and 50 µmol/L of TAU could considerably suppressed mitochondrial oxidative stress, enhanced MMP, and improved sperm motility and viability. CONCLUSION: TAU may attenuate the BPA-induced mitochondrial toxicity and impaired sperm motility via decreasing oxidative stress.


Subject(s)
Benzhydryl Compounds/toxicity , Estrogens, Non-Steroidal/toxicity , Mitochondria/drug effects , Oxidative Stress/drug effects , Phenols/toxicity , Protective Agents/pharmacology , Sperm Motility/drug effects , Taurine/pharmacology , Testis/drug effects , Animals , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Superoxide Dismutase/metabolism , Testis/metabolism
4.
Gastroenterol Hepatol Bed Bench ; 13(2): 168-176, 2020.
Article in English | MEDLINE | ID: mdl-32308939

ABSTRACT

AIM: This research studied the effects of glycyrrhizic acid (GA) on apoptosis induced with by titanium dioxide (NTiO2) in the liver of rats. BACKGROUND: It is widely accepted that the contamination resulting from nanoparticles (NPs) is an emerging dangerous issue. Metal oxide nanoparticles have high environmental stability and cause toxicity in the food chain. Thus, the present study investigated the anti-apoptotic effects of glycyrrhizic acid (GA) on the hepatotoxicity generated by titanium dioxide (NTiO2) NPs in the liver tissue. METHODS: Thirty-two male Wistar rats were randomly divided into four groups. NTiO2-treated rats were given 300 mg / kg of NTiO2 solution via gavage for 14 days; GA-treated were administered 100 mg/kg GA for 14 days; protection group was pre-treated with GA before NTiO2 administration for 7 days. Then, apoptotic index was evaluated through immunolocalization of Bax and Bcl-2 and TUNEL assay. RESULTS: we found that HSCORE of Bax expression and apoptotic index experienced a significant increase with NTiO2 (P <0.001), while Bcl-2 expression significantly diminished in NTiO2-treated rats (P <0.001). The results revealed that the increased Bax expression and apoptotic index were reversed by GA and enhanced the activities of Bcl2. CONCLUSION: The results revealed that GA effectively attenuated apoptosis against NTiO2 in rats.

5.
Chem Biol Interact ; 220: 214-21, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25016076

ABSTRACT

Many recent studies demonstrate that most nanoparticles (NPs) have an adverse or toxic action on liver. The aim of this study was to investigate the hepatoprotective effect of glycyrrhizic acid (GA) against hepatic injury induced by titanium dioxide nanoparticles (NTiO2) in rats. Thirty-two Wistar rats were randomly divided into 4 groups. NTiO2-intoxicated rats received 300 mg/kg of NTiO2 for 14 days by gavage method. Protection group pretreated with GA for 7 days before NTiO2 administration. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were detected as biomarkers in the blood to indicate hepatic injury. Product of lipid peroxidation (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were evaluated for oxidative stress in hepatic injury. Light microscopy for histopathological studies and TUNEL assay was also done. Administration of NTiO2 induced a significant elevation in plasma AST, ALT and ALP. In the liver, NTiO2 increased oxidative stress through the increase in lipid peroxidation and decrease in SOD and GPx enzymes. Histopathological studies showed that treatment with NTiO2 caused liver damage including centrilobular necrosis, which was accompanied by congestion and accumulation of inflammatory cells. Apoptotic index was also significantly increased in this group. Pretreatment of GA significantly decreased ALT, AST and ALP, attenuated the histopathology of hepatic injury, decreased apoptotic index, ameliorated oxidative stress in hepatic tissue, and increased the activities of SOD and GPx. These findings indicate that GA effectively protects against NTiO2-induced hepatotoxicity. GA has a potent protective effect against the NPs induced hepatotoxicity and might be clinically useful.


Subject(s)
Chemical and Drug Induced Liver Injury , Glycyrrhizic Acid/pharmacology , Liver/drug effects , Nanoparticles , Titanium , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Male , Microscopy, Atomic Force , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...