Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 6(4): 471-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17404643

ABSTRACT

We report the photophysical properties (absorption and emission spectra, quantum yield, and lifetime) of five dendrimers of first generation based on a TREN (tris(2-aminoethyl)amine) skeleton functionalized at the periphery with naphthyl and/or 5-dimethylamino-1-naphthalenesulfonamide (hereafter called dansyl) chromophores. Each dendrimer comprises one tertiary amine unit in the core and three branches carrying a sulfonimido unit at the periphery, each one substituted by two identical or different moieties. In particular, TD6 and TN6 contain dansyl (D) or naphthyl (N) units, respectively, while TD3B3, TN3B3 and TN3D3 contain dansyl, naphthyl or benzyl (B) units at the periphery. The spectroscopic behaviour of these dendrimers has been investigated in acetonitrile solution and compared with that of reference compounds. For all dendrimers the absorption bands are red shifted compared to those of monomeric naphthyl and dansyl reference compounds. Moreover, the intense naphthyl and dansyl fluorescence is greatly quenched because of strong interactions between the two aromatic moieties linked by a sulfonimido unit. Protonation of the amine units of the dendrimers by addition of CF(3)SO(3)H (triflic) acid causes a decrease in intensity of the luminescence and a change in the shape of the emission bands. The shapes of the titration curves depend on the dendrimer, but in any case the effect of acid can be fully reversed by successive addition of base (tributylamine). The obtained results reveal that among the intradendrimer interactions the most important one is that taking place (via mesomeric interaction) between the various chromophores and a pair of sulfonimido groups.

2.
Chemistry ; 11(19): 5625-36, 2005 Sep 19.
Article in English | MEDLINE | ID: mdl-16034993

ABSTRACT

Mass spectrometry, in particular MALDI-MS, has often been used as a valuable means to characterize dendritic molecules with respect to their molecular masses. Also, it is a valuable tool for analyzing potential defects in their structure which result from incomplete synthetic steps. This article presents a comparison of ESI and MALDI mass spectrometric experiments on dendrimers persulfonylated at their periphery. While the ESI mass spectra easily permit impurities and defects to be identified and thus provide evidence for sample purity, reactions with acidic matrices occur during the MALDI process. The resulting defects are identical to those expected from incomplete substitution. Thus, in these cases, MALDI-MS yields false negative results. With mass-selected, ESI-generated ions, collision experiments were performed in an FT-ICR mass spectrometer cell to provide detailed insight into the fragmentation patterns of the various dendrimers. Different fragmentation patterns are observed depending on the exact structure of the dendrimer. Also, the nature of the charge is important. The fragmentation reactions for protonated species differ much from those binding a sodium or potassium ion. These differences can be traced back to different sites for binding H+ versus Na+ or K+. Tandem MS experiments on mass-selected dendrimer ions with defects can be used to distinguish different types of defects. A concise structural assignment can thus be made on the basis of these experiments. Even mixtures of two isobaric defect variants with the same elemental composition can be identified.

3.
Chemphyschem ; 5(4): 473-80, 2004 Apr 19.
Article in English | MEDLINE | ID: mdl-15139220

ABSTRACT

We report the absorption spectra and the photophysical properties (fluorescence spectrum, quantum yield, and lifetime) of four dendrimers of the poly(propylene amine) family (POPAMs) functionalized at the periphery with naphthylsulfonamide (hereafter called naphthyl) units. Each dendrimer Gn, where n = 1 to 4 is the generation number, comprises 2n + 1 (i.e., 32 for G4) naphthyl functions in the periphery and 2n + 1--2 (i.e., 30 for G4) tertiary amine units in the branches. All the experiments have been carried out in acetonitrile solutions. Comparison with two reference compounds (N-methyl-naphthalene-2-sulfonamide, A, and N-(3-dimethylamino-propyl)-2-naphthalene-1-sulfonamide, B) has shown that the absorption spectra of the dendrimers are significantly different from those expected from the component units. Furthermore, the intense fluorescence band of the naphthyl unit (lambda max = 343 nm; phi = 0.15, tau = 8.5 ns) is strongly quenched in the dendrimers. The quenching effect increases with increasing generation and is accompanied by the appearance of a weak and broad emission tail at lower energy. Protonation of the amine units of the dendrimers by addition of CF3SO3H (triflic) acid causes a strong increase in the intensity of the naphthyl luminescence and a change in the form of the emission tail. The shapes of the titration curves depend on dendrimer generation, but in any case, the effect of the acid can be fully reversed by successive addition of a base (tributylamine). The results obtained show that in the dendrimers there are interactions (both in the ground and excited states) between naphthyl units as well as between naphthyl units and amine units of the branches; this gives rise to dimer/excimer and charge-transfer/exciplex excited states. Titration with Zn(CF3SO3)2 has the same effect as acid titration, as far as the final emission spectrum is concerned, but a much higher concentration of Zn(CF3SO3)2 has to be used and the shapes of the titration plots are very different. Titration with Co(NO3)2.6H2O causes a much smaller increase in the intensity of the naphthyl fluorescence compared with Zn(CF3SO3)2. The results obtained have shown that protonation and metal coordination can reveal the presence of ground and excited state electronic interactions in functionalized poly(propylene amine) dendrimers, and that the presence of photo-active units in the dendrimers can be useful to reveal some peculiar aspects of the protonation and metal coordination processes.

4.
Org Lett ; 6(7): 1075-8, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15040726

ABSTRACT

A method allowing for an unprecedented controllable functionalization of oligoamines via N,N-bis-sulfonylation with various sulfonyl chlorides has been developed. Depending on the nature of the sufonyl chloride and reaction conditions such as base, time of reaction, and temperature, each amino group can be selectively mono- or bis-sufonylated. The procedure was investigated in detail with the model substance tris(2-aminoethyl)amine and applied for the preparation of dumbbell-shaped coupled dendrons and second-generation sulfonimide-decorated dendrimers.

SELECTION OF CITATIONS
SEARCH DETAIL
...