Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Naturae ; 13(4): 82-88, 2021.
Article in English | MEDLINE | ID: mdl-35127151

ABSTRACT

The extracellular vesicles (EVs) produced by bacteria transport a wide range of compounds, including proteins, DNA and RNA, mediate intercellular interactions, and may be important participants in the mechanisms underlying the persistence of infectious agents. This study focuses on testing the hypothesis that the EVs of mycoplasmas, the smallest prokaryotes capable of independent reproduction, combined in the class referred to as Mollicutes, can penetrate into eukaryotic cells and modulate their immunoreactivity. To verify this hypothesis, for the first time, studies of in vitro interaction between human skin fibroblasts and vesicles isolated from Acholeplasma laidlawii (the ubiquitous mycoplasma that infects higher eukaryotes and is the main contaminant of cell cultures and vaccines) were conducted using confocal laser scanning microscopy and proteome profiling, employing a combination of 2D-DIGE and MALDI-TOF/TOF, the Mascot mass-spectrum analysis software and the DAVID functional annotation tool. These studies have revealed for the first time that the extracellular vesicles of A. laidlawii can penetrate into eukaryotic cells in vitro and modulate the expression of cellular proteins. The molecular mechanisms behind the interaction of mycoplasma vesicles with eukaryotic cells and the contribution of the respective nanostructures to the molecular machinery of cellular permissiveness still remain to be elucidated. The study of these aspects is relevant both for fundamental research into the "logic of life" of the simplest prokaryotes, and the practical development of efficient control over hypermutable bacteria infecting humans, animals and plants, as well as contaminating cell cultures and vaccines.

2.
Colloids Surf B Biointerfaces ; 135: 109-115, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26241922

ABSTRACT

Magnetic fluid-loaded liposomes (MFLs) were fabricated using magnetite nanoparticles (MNPs) and natural phospholipids via the thin film hydration method followed by extrusion. The size distribution and composition of MFLs were studied using dynamic light scattering and spectrophotometry. The effective ranges of magnetite concentration in MNPs hydrosol and MFLs for contrasting at both T2 and T1 relaxation were determined. On T2 weighted images, the MFLs effectively increased the contrast if compared with MNPs hydrosol, while on T1 weighted images, MNPs hydrosol contrasting was more efficient than that of MFLs. In vivo magnetic resonance imaging (MRI) contrasting properties of MFLs and their effects on tumor and normal tissues morphology, were investigated in rats with transplanted renal cell carcinoma upon intratumoral administration of MFLs. No significant morphological changes in rat internal organs upon intratumoral injection of MFLs were detected, suggesting that the liposomes are relatively safe and can be used as the potential contrasting agents for MRI.


Subject(s)
Contrast Media/chemistry , Liposomes/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Animals , Carcinoma, Renal Cell/pathology , Hydrophobic and Hydrophilic Interactions , Kidney/pathology , Kidney Neoplasms/pathology , Male , Neoplasm Transplantation , Particle Size , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...