Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529845

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus, recognized by the World Health Organization (WHO), has led to 164,523,894 confirmed cases and 3,412,032 deaths globally as of May 20, 2021. SARS-CoV-2 encodes crucial proteases for its replication cycle, including the papain-like protease (PLpro), presenting a potential target for developing COVID-19 treatments. Mauritine, a cyclopeptide alkaloid found in the Ziziphus-spina christi plant, exhibits antiviral properties and was investigated for its affinity and toxicity towards PLpro using molecular docking through MGLTools 1.5.6 with Autodock Tools 4.2. Preceding this, toxicity and ADME prediction were performed via Toxtree 3.1.0 software and SwissADME servers. Results from molecular docking revealed free binding energy values of -8.58; -7.73; -8.36; -6.07; -6.67; -7.83; -7.67; -7.40; and -6.87 Kcal/mol for Mauritine-A, Mauritine-B, Mauritine-C, Mauritine-D, Mauritine-F, Mauritine-H, Mauritine-J, Mauritine-L, and Mauritine-M, respectively. Correspondingly, inhibition constants were 0.51724; 2.14; 0.7398; 35.43; 12.95; 1.83; 2.38; 3.80; and 9.17 µM, respectively. Interactions observed included hydrogen bonds, hydrophobic interactions, and electrostatic interactions between the Mauritine compounds and the receptor. Mauritine-A and Mauritine-C emerged as a promising anti-COVID-19 candidate due to its superior affinity compared to other derivatives, as indicated by research findings. Interestingly, Mauritine-A and Mauritine-C exhibits notable stability as depicted by the RMSD and RMSF graphs, along with a considerable MM-PBSA binding free energy value of -162.431 and -137.500 kJ/mol, respectively.Communicated by Ramaswamy H. Sarma.

2.
Adv Appl Bioinform Chem ; 17: 1-19, 2024.
Article in English | MEDLINE | ID: mdl-38282640

ABSTRACT

Introduction: Amorphous drug dispersion is frequently used to enhance the solubility and dissolution of poorly water-soluble drugs, thereby improving their oral bioavailability. The dispersion of these drugs into polymer matrix can inhibit their recrystallization. The inter-molecular interactions between drug and polymer plays a role in the improvement of the dissolution rate, solubility, and physical stability of drug. Aim: This study aims to investigate the formation and interactions of ritonavir (RTV)/poloxamer (PLX) amorphous formulation using a computational approach via molecular dynamics (MD) simulations, which mimicked solvent evaporation and melt-quenching method. Methods: TheRoot Mean Square Deviation (RMSD) value, Root Mean Square Fluctuation (RMSF), Radial Distribution Function (RDF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA), and hydrogen bond interactions were analyzed to determine interaction mechanisms between RTV and PLX in amorphous solid dispersion. Results: The pi-alkyl bonds between RTV and PLX were formed after simulations of solvent evaporation, while the hydrogen bond interactions of RTV-PLX was observed during melt method simulations. These results indicate the successful formulation of amorphous solid dispersion (ASD) from RTV and PLX. The RMSD values obtained from the solvent evaporation, melt-cooling-A, melt-cooling-B, and melt-cooling-C methods were 3.33 Å, 1.97 Å, 1.30 Å, and 1.29 Å, respectively, while the average RMSF values were 2.65 Å, 1.04 Å, 1.05 Å, and 1.07 Å, respectively. This indicates that the suppression of translational motion of RTV from the melt method can be stronger than solvent evaporation caused by the intermolecular interactions of RTV-PLX. Conclusion: MD simulations helped in understanding the formation and interaction mechanisms of ASD formulations that were difficult to detect by experimental approaches.

3.
Curr Res Struct Biol ; 7: 100125, 2024.
Article in English | MEDLINE | ID: mdl-38282755

ABSTRACT

The EGFR-C797S resistance mutation to third-generation drugs has been overcome by fourth-generation inhibitors, allosteric inhibitors, namely EAI045 and has reached phase 3 clinical trials, so the Allosteric Site is currently an attractive target for development. In this study, researchers are interested in knowing the activity of metabolite compounds from marine natural ingredients Clathria Sp. against the Allosteric Site of EGFR computationally. The methods used include molecular docking using Autodock4 software and Molecular Dynamics simulation performed using GROMACS software. The research began with the preparation of metabolite samples from Clathria Sp. through the KnapSack database site and the preparation of EGFR receptors that have been complexed with allosteric inhibitors, namely proteins with PDB code 5D41. Each compound was docked to the Allosteric Site of the natural ligand and then molecular dynamics simulations were performed on the compound with the best docking energy compared to the natural ligand. From the docking results, the Clathrin_A compound showed the lowest binding energy compared to other metabolites, and the value was close to the natural ligand. Then from the molecular dynamics results, the clathrin_A compound shows good stability and resembles the natural ligand, which is analyzed through RMSD, RMSF, SASA, Rg, and PCA, and shows the binding free energy from MMPBSA analysis which is close to the natural ligand. It can be concluded, Clathrin_A compound has potential as an allosteric inhibitor.

4.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268238

ABSTRACT

Cigarette smoking poses various health risks, such as increasing the susceptibility to respiratory infections, contributing to osteoporosis, causing reproductive issues, delaying postoperative recovery, promoting ulcer formation and heightening the risk of diabetes. While many harmful effects of smoking are attributed to other cigarette components, it is nicotine's pharmacological effects that underlie tobacco addiction. Nicotine replacement therapy (NRT) aims to alleviate the urge to smoke and mitigate physiological and psychomotor withdrawal symptoms by delivering nicotine. This study explores the potential of sesquiterpene derivative compounds derived from the Cinnamomum genus using computational techniques. The research incorporates molecular docking analyses, Lipinski's rule of five filtration for drug-likeness, pharmacokinetic and toxicity predictions to assess safety profiles and molecular dynamics (MD) simulations to gauge interaction stability. The findings reveal that all sesquiterpene derivative compounds from the Cinnamomum genus can potentially inhibit nicotinic acetylcholine receptors (nAChRs), particularly nAChRÿ7. However, only abscisic acid exhibit active inhibition, along with suitable drug properties, pharmacokinetics and toxicity profiles. MD studies confirm the stability of interactions between abscisic acid with nAChRÿ7. Consequently, abscisic acid, as sesquiterpene derivatives from the Cinnamomum genus, holds substantial promise for further investigation as nAChRÿ7 inhibitors.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37643016

ABSTRACT

The present study aimed to strategically design a Molecularly Imprinted Polymer (MIP) with selective extraction capabilities for volatile compounds found in pork. These specific volatile compounds, such as 3-methyl-1-butanol, 1-nonanal, octanal, hexanal, 2-pentyl-furan, 1-penten-3-one, N-morpholinomethyl-isopropyl-sulfide, methyl butyrate, and (E,E)-2,4-decadienal, are primarily responsible for the distinctive aroma and flavor characteristics associated with pork. Molecular dynamics simulations were employed to investigate the stability of the pre-polymerization system, simulating the interactions between the volatile compounds as templates, 4-hydroxyethyl methacrylate (HEMA) as monomers, and ethylene glycol dimethacrylate (EGDMA) as crosslinkers. Computational simulations revealed that the optimal mole ratio of 1:4:20 for templates, monomers, and crosslinkers resulted in the most favorable functional radial distribution and exhibited the strongest interactions. To validate the computational findings, additional analyses were performed utilizing Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), radial distribution function (RDF), and hydrogen bond (HBond) occupancy. The calculated binding free energy demonstrated that all template molecules were capable to bind with both the monomers and crosslinkers, including 1-penten-3-one and N-morpholinomethyl-isopropyl-sulfide displaying the strongest interactions, with values of -12,674 kJ/mol and -11,646 kJ/mol, respectively. The congruence between the results obtained from the molecular simulation analyses highlights the crucial role of molecular dynamics simulations in the study and development of MIP for the analysis of marker compounds present in pork.Communicated by Ramaswamy H. Sarma.

6.
J Exp Pharmacol ; 15: 217-230, 2023.
Article in English | MEDLINE | ID: mdl-37252059

ABSTRACT

Purpose: We unravel the effect of anthocyanin-containing purple sweet potato synbiotic yogurt (PSPY) on 3T3-L1 adipocyte differentiation and its fundamental molecular mechanisms. Methods: Molecular docking simulation was performed to observe and identify the affinity and interaction between bioactive compounds and targeted proteins. MDI (isobutylmethylxanthine, dexamethasone, and insulin)-containing medium, a cocktail that stimulates adipogenesis, was used in this study. The toxic effect possibility of the yogurt product was evaluated using 3-[4, 5-dimethylthiazol-2-yl]-2.5 diphenyl tetrazolium bromide (MTT) assay. A 0.25%, 0.5%, 1%, and 5% (v/v) plain or purple sweet potato yogurt supernatant was given to 3T3-L1 preadipocyte culture medium from 24 h after seeding until day 11 of MDI-induced differentiation. The mRNA expression and lipid accumulation were analyzed using RT-qPCR and Oil red O staining, respectively, on day 11 after differentiation induction. Results: In silico study suggested that anthocyanin-derived compounds have the potential to inhibit peroxisome proliferator activated receptor gamma (PPAR-γ), a master regulator for white adipogenesis. Anthocyanin-containing PSPY significantly suppressed the expression of Pparg, Adipoq, Slc2a4, and Pgc1a. PSPY significantly suppressed Pparg with 1% and 5% concentrations, while with a concentration of 0.25%, PSPY significantly suppressed Adipoq expression as compared to control. Significant inhibition of Slc2a4 and Pgc1a was observed starting from a 0.25% concentration of PSPY. The suppression of adipogenic genes was also observed with the treatment of plain yogurt; however, the effects were relatively lower than the PSPY. The group treated with 1% and 5% of PSPY also showed inhibition effects on lipid accumulation. Conclusion: This study demonstrated PSPY inhibition effect on white adipocyte differentiation through suppression of Pparg and its downstream genes, Adipoq and Slc2a4, indicating the potential of this yogurt as a functional food for obesity management and prevention.

7.
J Biomol Struct Dyn ; 40(22): 11526-11532, 2022.
Article in English | MEDLINE | ID: mdl-34338602

ABSTRACT

The target for COVID-19 has been successfully crystallized along with its inhibitor, named SARS-CoV-2 main protease, making it easier for drug discovery and development. Sponge (Clathria Sp.) is a marine species that can be found in Indonesia and has a unique chemical structure that is still rarely explored in its properties. Therefore, this study aims to examined the potential of marine natural products from sponge (Clathria Sp.) as SARS-CoV-2 main protease inhibitor using in silico method. The ligand structures were obtained from the Knapsack database and the protein structure obtained from the RCSB site with the PDB code: 6LU7. The molecular docking method was validated by re-docked the native ligand and calculated the RMSD value. The compounds contained in Sponge were docked into the active site of the protein based on the validated methods. Afterward, the molecular dynamics were performed for 100 ns simulation, then analyzed its system complex stability. The RMSD 1.329 Å was obtained by re-docked of native ligand which indicates that the docking method was valid. Molecular docking of the ligands showed mirabilin_G has binding energy -7.38 kcal/mol, compared to the native ligand N3 inhibitor that is -7.30 kcal/mol, and the ligand showed good stability from molecular dynamics simulation indicated by RMSD, RMSF and MM-PBSA binding free energy similar to the inhibitor during 100 ns simulation. Its indicated the potential of the compounds contained in the sponge as inhibitor of SARS-CoV-2 main protease.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biological Products , COVID-19 , Humans , Ligands , Molecular Docking Simulation , SARS-CoV-2 , Biological Products/pharmacology , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology
8.
Molecules ; 26(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071361

ABSTRACT

Nuclear receptor REV-ERBß is an overexpressed oncoprotein that has been used as a target for cancer treatment. The metal-complex nature of its ligand, iron protoporphyrin IX (Heme), enables the REV-ERBß to be used for multiple therapeutic modalities as a photonuclease, a photosensitizer, or a fluorescence imaging agent. The replacement of iron with cobalt as the metal center of protoporphyrin IX changes the ligand from an agonist to an antagonist of REV-ERBß. The mechanism behind that phenomenon is still unclear, despite the availability of crystal structures of REV-ERBß in complex with Heme and cobalt protoporphyrin IX (CoPP). This study used molecular dynamic simulations to compare the effects of REV-ERBß binding to Heme and CoPP, respectively. The initial poses of Heme and CoPP in complex with agonist and antagonist forms of REV-ERBß were predicted using molecular docking. The binding energies of each ligand were calculated using the MM/PBSA method. The computed binding affinity of Heme to REV-ERBß was stronger than that of CoPP, in agreement with experimental results. CoPP altered the conformation of the ligand-binding site of REV-ERBß, disrupting the binding site for nuclear receptor corepressor, which is required for REV-ERBß to regulate the transcription of downstream target genes. Those results suggest that a subtle change in the metal center of porphyrin can change the behavior of porphyrin in cancer cell signaling. Therefore, modification of porphyrin-based agents for cancer therapy should be conducted carefully to avoid triggering unfavorable effects.


Subject(s)
Cobalt/chemistry , Neoplasms/drug therapy , Protoporphyrins/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/chemistry , Repressor Proteins/chemistry , Binding Sites , Chemistry, Pharmaceutical/methods , Heme/chemistry , Humans , Iron/chemistry , Kinetics , Ligands , Metals , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/chemistry , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Protein Binding , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...