Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 236: 116071, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172885

ABSTRACT

The optimized preparation of novel electrospun nanofibrous composites from cellulose acetate (CA) and ultra-high silica zeolites (UHSZ) are reported as a promising material for the adsorption of Volatile Organic Compound (VOCs). Two types of UHSZs, i.e. silicalite and USY were prepared by hydrothermal crystallization while the fabrication of composites was performed using single needle and needle-less electrospinning systems, demonstrating the scalability of the composite fibres' manufactured. Herein, factors such as properties of spinning solutions and electrospinning process parameters were studied, as well as interactions between the CA and UHSZs. In addition, Quartz Crystal Microbalance - Dissipation technique (QCM-D) was employed with an aim to study the adsorption behaviour of newly developed composites using ammonia as a model pollutant. The QCM-D data revealed that the presence of UHSZs in the CA materials increased adsorption capacity, designating CA/UHSZ composites as potential materials suitable for a large-scale removal of VOCs from polluted air.

2.
ChemSusChem ; 12(11): 2428-2438, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30912622

ABSTRACT

Ex situ catalytic biomass pyrolysis was investigated at both laboratory and bench scale by using a zeolite ZSM-5-based catalyst for selectively upgrading the bio-oil vapors. The catalyst consisted of nanocrystalline ZSM-5, modified by incorporation of ZrO2 and agglomerated with attapulgite (ZrO2 /n-ZSM-5-ATP). Characterization of this material by means of different techniques, including CO2 and NH3 temperature-programmed desorption (TPD), NMR spectroscopy, UV/Vis microspectroscopy, and fluorescence microscopy, showed that it possessed the right combination of accessibility and acid-base properties for promoting the conversion of the bulky molecules formed by lignocellulose pyrolysis and their subsequent deoxygenation to upgraded liquid organic fractions (bio-oil). The results obtained at the laboratory scale by varying the catalyst-to-biomass ratio (C/B) indicated that the ZrO2 /n-ZSM-5-ATP catalyst was more efficient for bio-oil deoxygenation than the parent zeolite n-ZSM-5, producing upgraded bio-oils with better combinations of mass and energy yields with respect to the oxygen content. The excellent performance of the ZrO2 /n-ZSM-5-ATP system was confirmed by working with a continuous bench-scale plant. The scale-up of the process, even with different raw biomasses as the feedstock, reaction conditions, and operation modes, was in line with the laboratory-scale results, leading to deoxygenation degrees of approximately 60 % with energy yields of approximately 70 % with respect to those of the thermal bio-oil.

SELECTION OF CITATIONS
SEARCH DETAIL
...