Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 9: 985141, 2022.
Article in English | MEDLINE | ID: mdl-36314015

ABSTRACT

Iron is a double-edged sword. It is vital for all that's living, yet its deficiency or overload can be fatal. In humans, iron homeostasis is tightly regulated at both cellular and systemic levels. Extracellular vesicles (EVs), now known as major players in cellular communication, potentially play an important role in regulating iron metabolism. The gut microbiota was also recently reported to impact the iron metabolism process and indirectly participate in regulating iron homeostasis, yet there is no proof of whether or not microbiota-derived EVs interfere in this relationship. In this review, we discuss the implication of EVs on iron metabolism and homeostasis. We elaborate on the blooming role of gut microbiota in iron homeostasis while focusing on the possible EVs contribution. We conclude that EVs are extensively involved in the complex iron metabolism process; they carry ferritin and express transferrin receptors. Bone marrow-derived EVs even induce hepcidin expression in ß-thalassemia. The gut microbiota, in turn, affects iron homeostasis on the level of iron absorption and possibly macrophage iron recycling, with still no proof of the interference of EVs. This review is the first step toward understanding the multiplex iron metabolism process. Targeting extracellular vesicles and gut microbiota-derived extracellular vesicles will be a huge challenge to treat many diseases related to iron metabolism alteration.

2.
Int J Tryptophan Res ; 14: 11786469211003109, 2021.
Article in English | MEDLINE | ID: mdl-33814916

ABSTRACT

Low levels of the neurotransmitter serotonin have been associated with the onset of depression. While traditional treatments include antidepressants, physical exercise has emerged as an alternative for patients with depressive disorders. Yet there remains the fundamental question of how exercise is sensed by the brain. The existence of a muscle-brain endocrine loop has been proposed: according to this scenario, exercise modulates metabolization of tryptophan into kynurenine within skeletal muscle, which in turn affects the brain, enhancing resistance to depression. But the breakdown of tryptophan into kynurenine during exercise may also alter serotonin synthesis and help limit depression. In this study, we investigated whether peripheral serotonin might play a role in muscle-brain communication permitting adaptation for endurance training. We first quantified tryptophan metabolites in the blood of 4 trained athletes before and after a long-distance trail race and correlated changes in tryptophan metabolism with physical performance. In parallel, to assess exercise capacity and endurance in trained control and peripheral serotonin-deficient mice, we used a treadmill incremental test. Peripheral serotonin-deficient mice exhibited a significant drop in physical performance despite endurance training. Brain levels of tryptophan metabolites were similar in wild-type and peripheral serotonin-deficient animals, and no products of muscle-induced tryptophan metabolism were found in the plasma or brains of peripheral serotonin-deficient mice. But mass spectrometric analyses revealed a significant decrease in levels of 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in both the soleus and plantaris muscles, demonstrating that metabolization of tryptophan into serotonin in muscles is essential for adaptation to endurance training. In light of these findings, the breakdown of tryptophan into peripheral but not brain serotonin appears to be the rate-limiting step for muscle adaptation to endurance training. The data suggest that there is a peripheral mechanism responsible for the positive effects of exercise, and that muscles are secretory organs with autocrine-paracrine roles in which serotonin has a local effect.

3.
Environ Int ; 121(Pt 2): 1113-1120, 2018 12.
Article in English | MEDLINE | ID: mdl-30390924

ABSTRACT

BACKGROUND: Persistent organic pollutants (POPs) are known to accumulate in adipose tissues (AT). This storage may be beneficial by diverting POPs from other sensitive tissues or detrimental because of chronic release of pollutants as indirectly suggested during weight loss. The aim is to study the biological and/or toxic effects that chronic POP release from previously contaminated grafted AT could exert in a naïve mouse. METHODS: C57BL/6J male mice were exposed intraperitoneally to 2,3,7,8-tetrachlorodibenzo-p-doxin (TCDD); their epididymal fat pads were collected and grafted on the back skin of uncontaminated recipient mice whose brain, liver, and epididymal ATs were analyzed (TCDD concentration, relevant gene expression). Kinetics of release and redistribution were modeled using Physiologically Based PharmacoKinetics (PBPK). RESULTS: The grafts released TCDD over a period of 10 weeks with different kinetics of distribution in the three organs studied. A PBPK model was used to simulate the AT releasing process and the incorporation of TCDD into the major organs. At three weeks post-graft, we observed significant changes in gene expression in the liver and the host AT with signatures reminiscent of inflammation, gluconeogenesis and fibrosis as compared to the control. CONCLUSIONS: This study confirms that AT-stored TCDD can be released and distributed to the organs of the recipient hence leading to distinct changes in gene expression. This original model provides direct evidence of the potential toxic-relevant effects when endogenous sources of contamination are present.


Subject(s)
Adipose Tissue , Heterografts , Polychlorinated Dibenzodioxins , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Adipose Tissue/transplantation , Animals , Brain/metabolism , Heterografts/chemistry , Heterografts/metabolism , Heterografts/transplantation , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Polychlorinated Dibenzodioxins/metabolism , Polychlorinated Dibenzodioxins/pharmacokinetics , Polychlorinated Dibenzodioxins/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...