Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 103: 8-17, 2023 11.
Article in English | MEDLINE | ID: mdl-37392805

ABSTRACT

Microglia (MØ) morphologies are closely related to their functional state and have a central role in the maintenance of brain homeostasis. It is well known that inflammation contributes to neurodegeneration at later stages of Alzheimer's Disease, but it is not clear which role MØ-mediated inflammation may play earlier in the disease pathogenesis. We have previously reported that diffusion MRI (dMRI) is able to detect early myelin abnormalities present in 2-month-old 3xTg-AD (TG) mice; since MØ actively participate in regulating myelination, the goal of this study was to assess quantitatively MØ morphological characteristics and its association with dMRI metrics patterns in 2-month-old 3xTg-AD mice. Our results show that, even at this young age (2-month-old), TG mice have statistically significantly more MØ cells, which are overall smaller and more complex, compared with age-matched normal control mice (NC). Our results also confirm that myelin basic protein is reduced in TG mice, particularly in fimbria (Fi) and cortex. Additionally, MØ morphological characteristics, in both groups, correlate with several dMRI metrics, depending on the brain region examined. For example, the increase in MØ number correlated with higher radial diffusivity (r = 0.59, p = 0.008), lower fractional anisotropy (FA) (r = -0.47, p = 0.03), and lower kurtosis fractional anisotropy (KFA) (r = -0.55, p = 0.01) in the CC. Furthermore, smaller MØ cells correlate with higher axial diffusivity) in the HV (r = 0.49, p = 0.03) and Sub (r = 0.57, p = 0.01). Our findings demonstrate, for the first time, that MØ proliferation/activation are a common and widespread feature in 2-month-old 3xTg-AD mice and suggest that dMRI measures are sensitive to these MØ alterations, which are associated in this model with myelin dysfunction and microstructural integrity abnormalities.


Subject(s)
Alzheimer Disease , White Matter , Mice , Animals , Diffusion Tensor Imaging/methods , Microglia/pathology , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , White Matter/pathology , Mice, Transgenic
2.
Aging Brain ; 22022.
Article in English | MEDLINE | ID: mdl-36324695

ABSTRACT

Age-related white matter degeneration is characterized by myelin breakdown and neuronal fiber loss that preferentially occur in regions that myelinate later in development. Conventional diffusion MRI (dMRI) has demonstrated age-related increases in diffusivity but provide limited information regarding the tissue-specific changes driving these effects. A recently developed dMRI biophysical modeling technique, Fiber Ball White Matter (FBWM) modeling, offers enhanced biological interpretability by estimating microstructural properties specific to the intra-axonal and extra-axonal spaces. We used FBWM to illustrate the biological mechanisms underlying changes throughout white matter in healthy aging using data from 63 cognitively unimpaired adults ages 45-85 with no radiological evidence of neurodegeneration or incipient Alzheimer's disease. Conventional dMRI and FBWM metrics were computed for two late-myelinating (genu of the corpus callosum and association tracts) and two early-myelinating regions (splenium of the corpus callosum and projection tracts). We examined the associations between age and these metrics in each region and tested whether age was differentially associated with these metrics in late- vs. early-myelinating regions. We found that conventional metrics replicated patterns of age-related increases in diffusivity in late-myelinating regions. FBWM additionally revealed specific intra- and extra-axonal changes suggestive of myelin breakdown and preferential loss of smaller-diameter axons, yielding in vivo corroboration of findings from histopathological studies of aged brains. These results demonstrate that advanced biophysical modeling approaches, such as FBWM, offer novel information about the microstructure-specific alterations contributing to white matter changes in healthy aging. These tools hold promise as sensitive indicators of early pathological changes related to neurodegenerative disease.

3.
Clin Sci (Lond) ; 136(21): 1555-1570, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36314470

ABSTRACT

Diabetes doubles the risk of vascular cognitive impairment, but the underlying reasons remain unclear. In the present study, we determined the temporal and spatial changes in the brain structure after microemboli (ME) injection using diffusion MRI (dMRI). Control and diabetic rats received cholesterol crystal ME (40-70 µm) injections. Cognitive tests were followed up to 16 weeks, while dMRI scans were performed at baseline and 12 weeks post-ME. The novel object recognition test had a lower d2 recognition index along with a decrease in spontaneous alternations in the Y maze test in diabetic rats with ME. dMRI showed that ME injection caused infarction in two diabetic animals (n=5) but none in controls (n=6). In diabetes, radial diffusivity (DR) was increased while fractional anisotropy (FA) was decreased in the cortex, indicating loss of tissue integrity and edema. In the dorsal hippocampus, mean diffusivity (MD), axial diffusivity (DA), and DR were significantly increased, indicating loss of axons and myelin damage. Histological analyses confirmed more tissue damage and microglial activation in diabetic rats with ME. These results suggest that ME injury and associated cerebrovascular dysfunction are greater in diabetes, which may cause cognitive deficits. Strategies to improve vascular function can be a preventive and therapeutic approach for vascular cognitive impairment.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Diabetes Mellitus, Experimental , White Matter , Animals , Rats , White Matter/pathology , Cognitive Dysfunction/pathology , Brain/pathology , Magnetic Resonance Imaging
4.
Magn Reson Imaging ; 94: 48-55, 2022 12.
Article in English | MEDLINE | ID: mdl-36116712

ABSTRACT

The widely studied triple transgenic (3xTg-AD) mouse provides a robust model of Alzheimer's disease (AD) with region dependent patterns of progressive amyloid-ß (Aß) and tau pathology. Using diffusion MRI (dMRI), we investigated the sensitivity of dMRI measures in capturing AD pathology associated microstructure alterations in older 3xTg-AD mice, and the degree to which dMRI changes correlate with measurements of Aß and tau pathology. 3xTg-AD and normal control (NC) mice, 15 to 21 months of age, were used in this study. In vivo dMRI data were acquired for the generation of diffusion tensor (DT) and diffusional kurtosis (DK) measures within the hippocampus and fimbria (Fi). For these same brain regions, Aß and tau pathology were quantified by morphological analysis of Aß1-42 and AT8 immunoreactivity. Two-tailed, two-sample t-tests were performed to assess group differences in each brain region of interest (ROI), with the Benjamini-Hochberg false discovery rate (FDR) method being applied to adjust for multiple comparisons. Spearman correlation coefficients were calculated to investigate associations between diffusion and morphological measures. Our results revealed, depending on the brain region, DT and DK measures were able to detect group differences. In the dorsal hippocampus (HD), fractional anisotropy (FA) was significantly higher in the 3xTg-AD mice compared with NC mice. In the subiculum (SUB), FA, axial diffusivity (D||) and radial kurtosis (K┴) were significantly higher in 3xTg-AD mice compared with NC mice. Morphological quantification of Aß1-42 and AT8 immunoreactivity showed elevated Aß and tau in the Fi, ventral hippocampus (HV) and SUB of 3xTg-AD mice. The presence of Aß and tau was significantly correlated with several DT and DK measures, particularly in the SUB, where an increase in tau correlated with an increase in mean kurtosis (MK) and K┴. This work demonstrates significant dMRI differences between older 3xTg-AD and NC mice in the hippocampus and Fi. Significant correlations were found between dMRI and morphological measures of Aß and tau pathology. These results support the potential of dMRI-derived parameters as biomarkers of AD pathology. Since the imaging methods employed here are easily translatable to clinical MRI, our results are also relevant for human AD patients.


Subject(s)
Alzheimer Disease , Aged , Animals , Humans , Mice , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Correlation of Data , Diffusion Magnetic Resonance Imaging/methods , Disease Models, Animal , Mice, Transgenic
5.
Magn Reson Imaging ; 83: 1-13, 2021 11.
Article in English | MEDLINE | ID: mdl-34229088

ABSTRACT

Degeneration of the basal forebrain (BF) is detected early in the course of Alzheimer's disease (AD). Reduction in the number of BF cholinergic (ChAT) neurons associated with age-related hippocampal cholinergic neuritic dystrophy is described in the 3xTg-AD mouse model; however, no prior diffusion MRI (dMRI) study has explored the presence of BF alterations in this model. Here we investigated the ability of diffusion MRI (dMRI) to detect abnormalities in BF microstructure for the 3xTg-AD mouse model, along with related pathology in the hippocampus (HP) and white matter (WM) tracks comprising the septo-hippocampal pathway. 3xTg-AD and normal control (NC) mice were imaged in vivo using the specific dMRI technique known as diffusional kurtosis imaging (DKI) at 2, 8, and 15 months of age, and 8 dMRI parameters were measured at each time point. Our results revealed significant lower dMRI values in the BF of 2 months-old 3xTg-AD mice compared with NC mice, most likely related to the increased number of ChAT neurons seen in this AD mouse model at this age. They also showed significant age-related dMRI changes in the BF of both groups between 2 and 8 months of age, mainly a decrease in fractional anisotropy and axial diffusivity, and an increase in radial kurtosis. These dMRI changes in the BF may be reflecting the complex aging and pathological microstructural changes described in this region. Group differences and age-related changes were also observed in the HP, fimbria (Fi) and fornix (Fx). In the HP, diffusivity values were significantly higher in the 2 months-old 3xTg-AD mice, and the HP of NC mice showed a significant increase in axial kurtosis after 8 months, reflecting a normal pattern of increased fiber density complexity, which was not seen in the 3xTg-AD mice. In the Fi, mean and radial diffusivity values were significantly higher, and fractional anisotropy, radial kurtosis and kurtosis fractional anisotropy were significantly lower in the 2 months-old 3xTg-AD mice. The age trajectories for both NC and TG mice in the Fi and Fx were similar between 2 and 8 months, but after 8 months there was a significant decrease in diffusivity metrics associated with an increase in kurtosis metrics in the 3xTg-AD mice. These later HP, Fi and Fx dMRI changes probably reflect the growing number of dystrophic neurites and AD pathology progression in the HP, accompanied by WM disruption in the septo-hippocampal pathway. Our results demonstrate that dMRI can detect early cytoarchitectural abnormalities in the BF, as well as related aging and neurodegenerative changes in the HP, Fi and Fx of the 3xTg-AD mice. Since DKI is widely available on clinical scanners, these results also support the potential of the considered dMRI parameters as in vivo biomarkers for AD disease progression.


Subject(s)
Alzheimer Disease , Basal Forebrain , White Matter , Alzheimer Disease/diagnostic imaging , Animals , Cholinergic Agents , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Mice
6.
NMR Biomed ; 33(9): e4346, 2020 09.
Article in English | MEDLINE | ID: mdl-32557874

ABSTRACT

The 3×Tg-AD mouse is one of the most studied animal models of Alzheimer's disease (AD), and develops both amyloid beta deposits and neurofibrillary tangles in a temporal and spatial pattern that is similar to human AD pathology. Additionally, abnormal myelination patterns with changes in oligodendrocyte and myelin marker expression are reported to be an early pathological feature in this model. Only few diffusion MRI (dMRI) studies have investigated white matter abnormalities in 3×Tg-AD mice, with inconsistent results. Thus, the goal of this study was to investigate the sensitivity of dMRI to capture brain microstructural alterations in 2-month-old 3×Tg-AD mice. In the fimbria, the fractional anisotropy (FA), kurtosis fractional anisotropy (KFA), and radial kurtosis (K┴ ) were found to be significantly lower in 3×Tg-AD mice than in controls, while the mean diffusivity (MD) and radial diffusivity (D┴ ) were found to be elevated. In the fornix, K┴ was lower for 3×Tg-AD mice; in the dorsal hippocampus MD and D┴ were elevated, as were FA, MD, and D┴ in the ventral hippocampus. These results indicate, for the first time, dMRI changes associated with myelin abnormalities in young 3×Tg-AD mice, before they develop AD pathology. Morphological quantification of myelin basic protein immunoreactivity in the fimbria was significantly lower in the 3×Tg-AD mice compared with the age-matched controls. Our results demonstrate that dMRI is able to detect widespread, significant early brain morphological abnormalities in 2-month-old 3×Tg-AD mice.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/abnormalities , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Animals , Anisotropy , Brain/pathology , Male , Mice, Transgenic
7.
Magn Reson Imaging ; 57: 235-242, 2019 04.
Article in English | MEDLINE | ID: mdl-30543850

ABSTRACT

The sensitivity of multiple diffusion MRI (dMRI) parameters to longitudinal changes in white matter microstructure was investigated for the 3xTg-AD transgenic mouse model of Alzheimer's disease, which manifests both amyloid beta plaques and neurofibrillary tangles. By employing a specific dMRI method known as diffusional kurtosis imaging, eight different diffusion parameters were quantified to characterize distinct aspects of water diffusion. Four female 3xTg-AD mice were imaged at five time points, ranging from 4.5 to 18 months of age, and the diffusion parameters were investigated in four white matter regions (fimbria, external capsule, internal capsule and corpus callosum). Significant changes were observed in several diffusion parameters, particularly in the fimbria and in the external capsule, with a statistically significant decrease in diffusivity and a statistically significant increase in kurtosis. Our preliminary results demonstrate that dMRI can detect microstructural changes in white matter for the 3xTg-AD mouse model due to aging and/or progression of pathology, depending strongly on the diffusion parameter and anatomical region.


Subject(s)
Alzheimer Disease/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Mice, Transgenic , Neurofibrillary Tangles/pathology , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology , White Matter/pathology
8.
Neurobiol Aging ; 70: 265-275, 2018 10.
Article in English | MEDLINE | ID: mdl-30055412

ABSTRACT

Myelin breakdown and neural fiber loss occur in aging. This study used white matter tract integrity metrics derived from biophysical modeling using Diffusional Kurtosis Imaging to assess loss of myelin (i.e., extraaxonal diffusivity, radial direction, De,⊥) and axonal density (i.e., axonal water fraction) in cognitively unimpaired older adults. Tract-based spatial statistics and region of interest analyses sought to identify ontogenic differences and age-related changes in white matter tracts using cross-sectional and longitudinal data analyzed with general linear and mixed-effects models. In addition to pure diffusion parameters (i.e., fractional anisotropy, mean diffusivity, mean kurtosis), we found that white matter tract integrity metrics significantly differentiated early- from late-myelinating tracts, correlated with age in spatially distinct regions, and identified primarily extraaxonal changes over time. Percent metric changes were |0.3-0.9|% and |0.0-1.9|% per year using cross-sectional data and longitudinal data, respectively. There was accelerated decline in some late- versus early-myelinating tracts in older age. These results demonstrate that these metrics may inform further study of the transition from age-related changes to neurodegenerative decline.


Subject(s)
Aging/physiology , Brain/diagnostic imaging , Brain/physiology , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , White Matter/physiology , Aged , Aged, 80 and over , Axons , Brain/anatomy & histology , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Models, Neurological , Myelin Sheath , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , White Matter/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...