Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(60): 124976-124991, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37160858

ABSTRACT

In this study, carbon quantum dots (C-QDs), prepared via hydrothermal-microwave procedures, were successfully combined with nanostructured titania (TiO2). The photocatalytic oxidation/reduction activity of the C-QDs/TiO2 composite films was evaluated in the decomposition of organic-inorganic contaminants from aqueous solutions under UV illumination. Physicochemical characterizations were applied to investigate the crystal structure of the carbon quantum dots and the composites. It was found that the prepared C-QDs/TiO2 composites had great contribution to the photocatalytic reduction of hexavalent chromium (Cr+6) species and 4-Nitrophenol (PNP) as well as to the photocatalytic oxidation of methylene blue (MB) and Rhodamine B (RhB) dyes. The mechanism of the photocatalytic reaction was studied with trapping experiments, revealing that the electron (e-) radical species were powerfully supported for the photocatalytic reduction of Cr+6 and PNP and the holes (h+) are the main active species for the photocatalytic oxidation reactions.


Subject(s)
Quantum Dots , Water Pollutants, Chemical , Water Pollutants , Quantum Dots/chemistry , Carbon , Water Pollutants, Chemical/analysis
2.
Materials (Basel) ; 15(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806752

ABSTRACT

In this review, the most recent advances in the field of magnetic composite photocatalysts with integrated plasmonic silver (Ag) is presented, with an overview of their synthesis techniques, properties and photocatalytic pollutant removal applications. Magnetic attributes combined with plasmonic properties in these composites result in enhancements for light absorption, charge-pair generation-separation-transfer and photocatalytic efficiency with the additional advantage of their facile magnetic separation from water solutions after treatment, neutralizing the issue of silver's inherent toxicity. A detailed overview of the currently utilized synthesis methods and techniques for the preparation of magnetic silver-integrated composites is presented. Furthermore, an extended critical review of the most recent pollutant removal applications of these composites via green photocatalysis technology is presented. From this survey, the potential of magnetic composites integrated with plasmonic metals is highlighted for light-induced water treatment and purification. Highlights: (1) Perspective of magnetic properties combined with plasmon metal attributes; (2) Overview of recent methods for magnetic silver-integrated composite synthesis; (3) Critical view of recent applications for photocatalytic pollutant removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...