Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Immunol ; 10: 1377, 2019.
Article in English | MEDLINE | ID: mdl-31293571

ABSTRACT

The Bordetella species are Gram-negative bacterial pathogens that colonizes mammalian respiratory tract causing respiratory diseases in humans and animals. B. bronchiseptica causes clinical conditions in many mammals including immunocompromised humans. Using the dog model of respiratory infection, it has been shown in this study that a newly developed B. bronchiseptica Bacterial Ghost (BbBG) vaccine exhibited significant protection in the face of a severe pathogenic bacterial challenge in seronegative dogs. The protein E-specific lysis mechanism was used to produce BbBGs. Bacterial Ghosts (BGs) are the empty cell envelope of Gram-negative bacterium. They are genetically processed to form a microscopic hole in their membrane, through which all the cytoplasmic contents are expelled leaving behind intact empty bacterial shells. Due to the intact surface structures of BGs, they offer the safety of inactivated but efficacy of live attenuated vaccines. In this study, seronegative dogs were vaccinated subcutaneously (s/c) with two different doses of a newly developed BbBG vaccine [lower 10∧5 (BbBG - 5) and higher 10∧7 (BbBG - 7)] on day 0 and 21. The animals were challenged (by aerosol) with virulent live B. bronchiseptica strains 41 days after first vaccination. The dogs vaccinated s/c with BbBG - 7 vaccine had significantly lower spontaneous coughing scores (P = 0.0001) than dogs in negative control group. Furthermore, the tested BbBG - 7 vaccine was equivalent to the positive control vaccine Bronchicine CAe in terms of safety and efficacy. For the first time, we report the successful use of liquid formulated BGs vaccines in animal studies. Earlier reported studies using BGs vaccines were performed with resuspended freeze-dried BGs preparations.


Subject(s)
Bacterial Vaccines/pharmacology , Bordetella Infections/prevention & control , Bordetella bronchiseptica/immunology , Respiratory Tract Infections/prevention & control , Animals , Bacterial Vaccines/immunology , Bordetella Infections/immunology , Bordetella Infections/pathology , Disease Models, Animal , Dogs , Dose-Response Relationship, Immunologic , Humans , Injections, Subcutaneous , Respiratory Tract Infections/immunology , Respiratory Tract Infections/pathology
3.
Mol Cell Biochem ; 333(1-2): 99-108, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19618123

ABSTRACT

Acs2p is one of two acetyl-coenzyme A synthetases in Saccharomyces cerevisiae. We have prepared and characterized a monoclonal antibody specific for Acs2p and find that Acs2p is localized primarily to the nucleus, including the nucleolus, with a minor amount in the cytosol. We find that Acs2p is required for replicative longevity: an acs2 Delta strain has a reduced replicative life span compared to wild-type and acs1 Delta strains. Furthermore, replicatively aged acs2 Delta cells contain elevated levels of extrachromosomal rDNA circles, and silencing at the rDNA locus is impaired in an acs2 Delta strain. These findings indicate that Acs2p-mediated synthesis of acetyl-CoA in the nucleus functions to promote rDNA silencing and replicative longevity in yeast.


Subject(s)
Acetate-CoA Ligase/physiology , Saccharomyces cerevisiae/cytology , DNA, Ribosomal , Gene Silencing , Nuclear Proteins , Saccharomyces cerevisiae/enzymology
4.
FEMS Microbiol Lett ; 250(2): 245-51, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16085372

ABSTRACT

Extrachromosomal rDNA circles (ERCs) and recombinant origin-containing plasmids (ARS-plasmids) are thought to reduce replicative life span in the budding yeast Saccharomyces cerevisiae due to their accumulation in yeast cells by an asymmetric inheritance process known as mother cell bias. Most commonly used laboratory yeast strains contain the naturally occurring, high copy number 2-micron circle plasmid. 2-micron plasmids are known to exhibit stable mitotic inheritance, unlike ARS-plasmids and ERCs, but the fidelity of inheritance during replicative aging and cell senescence has not been studied. This raises the question: do 2-micron circles reduce replicative life span? To address this question we have used a convenient method to cure laboratory yeast strains of the 2-micron plasmid. We find no difference in the replicative life spans of otherwise isogenic cir+ and cir0 strains, with and without the 2-micron plasmid. Consistent with this, we find that 2-micron circles do not accumulate in old yeast cells. These findings indicate that naturally occurring levels of 2-micron plasmids do not adversely affect life span, and that accumulation due to asymmetric inheritance is required for reduction of replicative life span by DNA episomes.


Subject(s)
Plasmids/physiology , Saccharomyces cerevisiae/physiology , Particle Size , Plasmids/chemistry , Plasmids/genetics , Saccharomyces cerevisiae/genetics
5.
J Biol Chem ; 278(43): 41607-17, 2003 Oct 24.
Article in English | MEDLINE | ID: mdl-12904293

ABSTRACT

Aging in the yeast Saccharomyces cerevisiae is under the control of multiple pathways. The production and accumulation of extrachromosomal rDNA circles (ERCs) is one pathway that has been proposed to bring about aging in yeast. To test this proposal, we have developed a plasmid-based model system to study the role of DNA episomes in reduction of yeast life span. Recombinant plasmids containing different replication origins, cis-acting partitioning elements, and selectable marker genes were constructed and analyzed for their effects on yeast replicative life span. Plasmids containing the ARS1 replication origin reduce life span to the greatest extent of the plasmids analyzed. This reduction in life span is partially suppressed by a CEN4 centromeric element on ARS1 plasmids. Plasmids containing a replication origin from the endogenous yeast 2 mu circle also reduce life span, but to a lesser extent than ARS1 plasmids. Consistent with this, ARS1 and 2 mu origin plasmids accumulate in approximately 7-generation-old cells, but ARS1/CEN4 plasmids do not. Importantly, ARS1 plasmids accumulate to higher levels in old cells than 2 mu origin plasmids, suggesting a correlation between plasmid accumulation and life span reduction. Reduction in life span is neither an indirect effect of increased ERC levels nor the result of stochastic cessation of growth. The presence of a fully functional 9.1-kb rDNA repeat on plasmids is not required for, and does not augment, reduction in life span. These findings support the view that accumulation of DNA episomes, including episomes such as ERCs, cause cell senescence in yeast.


Subject(s)
Plasmids/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Gene Dosage , Genetic Markers , Mitosis , Replication Origin , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...