Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 33(12): 1284-1295, 2022 12.
Article in English | MEDLINE | ID: mdl-36089134

ABSTRACT

BACKGROUND: Studies of targeted therapy resistance in lung cancer have primarily focused on single-gene alterations. Based on prior work implicating apolipoprotein b mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutagenesis in histological transformation of epidermal growth factor receptor (EGFR)-mutant lung cancers, we hypothesized that mutational signature analysis may help elucidate acquired resistance to targeted therapies. PATIENTS AND METHODS: APOBEC mutational signatures derived from an Food and Drug Administration-cleared multigene panel [Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)] using the Signature Multivariate Analysis (SigMA) algorithm were validated against the gold standard of mutational signatures derived from whole-exome sequencing. Mutational signatures were decomposed in 3276 unique lung adenocarcinomas (LUADs), including 93 paired osimertinib-naïve and -resistant EGFR-mutant tumors. Associations between APOBEC and mechanisms of resistance to osimertinib were investigated. Whole-genome sequencing was carried out on available EGFR-mutant lung cancer samples (10 paired, 17 unpaired) to investigate large-scale genomic alterations potentially contributing to osimertinib resistance. RESULTS: APOBEC mutational signatures were more frequent in receptor tyrosine kinase (RTK)-driven lung cancers (EGFR, ALK, RET, and ROS1; 25%) compared to LUADs at large (20%, P < 0.001); across all subtypes, APOBEC mutational signatures were enriched in subclonal mutations (P < 0.001). In EGFR-mutant lung cancers, osimertinib-resistant samples more frequently displayed an APOBEC-dominant mutational signature compared to osimertinib-naïve samples (28% versus 14%, P = 0.03). Specifically, mutations detected in osimertinib-resistant tumors but not in pre-treatment samples significantly more frequently displayed an APOBEC-dominant mutational signature (44% versus 23%, P < 0.001). EGFR-mutant samples with APOBEC-dominant signatures had enrichment of large-scale genomic rearrangements (P = 0.01) and kataegis (P = 0.03) in areas of APOBEC mutagenesis. CONCLUSIONS: APOBEC mutational signatures are frequent in RTK-driven LUADs and increase under the selective pressure of osimertinib in EGFR-mutant lung cancer. APOBEC mutational signature enrichment in subclonal mutations, private mutations acquired after osimertinib treatment, and areas of large-scale genomic rearrangements highlights a potentially fundamental role for APOBEC mutagenesis in the development of resistance to targeted therapies, which may be potentially exploited to overcome such resistance.


Subject(s)
Adenocarcinoma of Lung , Chromothripsis , Lung Neoplasms , Humans , Protein-Tyrosine Kinases/genetics , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Receptor Protein-Tyrosine Kinases/genetics , Mutagenesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
Ann Oncol ; 31(10): 1386-1396, 2020 10.
Article in English | MEDLINE | ID: mdl-32561401

ABSTRACT

BACKGROUND: Patients with lung cancers may have disproportionately severe coronavirus disease 2019 (COVID-19) outcomes. Understanding the patient-specific and cancer-specific features that impact the severity of COVID-19 may inform optimal cancer care during this pandemic. PATIENTS AND METHODS: We examined consecutive patients with lung cancer and confirmed diagnosis of COVID-19 (n = 102) at a single center from 12 March 2020 to 6 May 2020. Thresholds of severity were defined a priori as hospitalization, intensive care unit/intubation/do not intubate ([ICU/intubation/DNI] a composite metric of severe disease), or death. Recovery was defined as >14 days from COVID-19 test and >3 days since symptom resolution. Human leukocyte antigen (HLA) alleles were inferred from MSK-IMPACT (n = 46) and compared with controls with lung cancer and no known non-COVID-19 (n = 5166). RESULTS: COVID-19 was severe in patients with lung cancer (62% hospitalized, 25% died). Although severe, COVID-19 accounted for a minority of overall lung cancer deaths during the pandemic (11% overall). Determinants of COVID-19 severity were largely patient-specific features, including smoking status and chronic obstructive pulmonary disease [odds ratio for severe COVID-19 2.9, 95% confidence interval 1.07-9.44 comparing the median (23.5 pack-years) to never-smoker and 3.87, 95% confidence interval 1.35-9.68, respectively]. Cancer-specific features, including prior thoracic surgery/radiation and recent systemic therapies did not impact severity. Human leukocyte antigen supertypes were generally similar in mild or severe cases of COVID-19 compared with non-COVID-19 controls. Most patients recovered from COVID-19, including 25% patients initially requiring intubation. Among hospitalized patients, hydroxychloroquine did not improve COVID-19 outcomes. CONCLUSION: COVID-19 is associated with high burden of severity in patients with lung cancer. Patient-specific features, rather than cancer-specific features or treatments, are the greatest determinants of severity.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Lung Neoplasms/epidemiology , Lung Neoplasms/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Adult , Aged , Aged, 80 and over , B7-H1 Antigen/immunology , B7-H1 Antigen/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Female , Follow-Up Studies , Hospitalization/trends , Humans , Hydroxychloroquine/therapeutic use , Lung Neoplasms/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Retrospective Studies , SARS-CoV-2 , COVID-19 Drug Treatment
3.
Ann Oncol ; 31(9): 1207-1215, 2020 09.
Article in English | MEDLINE | ID: mdl-32422171

ABSTRACT

BACKGROUND: The tropomyosin receptor kinase (TRK) pathway controls appetite, balance, and pain sensitivity. While these functions are reflected in the on-target adverse events (AEs) observed with TRK inhibition, these AEs remain under-recognized, and pain upon drug withdrawal has not previously been reported. As TRK inhibitors are approved by multiple regulatory agencies for TRK or ROS1 fusion-positive cancers, characterizing these AEs and corresponding management strategies is crucial. PATIENTS AND METHODS: Patients with advanced or unresectable solid tumors treated with a TRK inhibitor were retrospectively identified in a search of clinical databases. Among these patients, the frequency, severity, duration, and management outcomes of AEs including weight gain, dizziness or ataxia, and withdrawal pain were characterized. RESULTS: Ninety-six patients with 15 unique cancer histologies treated with a TRK inhibitor were identified. Weight gain was observed in 53% [95% confidence interval (CI), 43%-62%] of patients and increased with time on TRK inhibition. Pharmacologic intervention, most commonly with glucagon-like peptide 1 analogs or metformin, appeared to result in stabilization or loss of weight. Dizziness, with or without ataxia, was observed in 41% (95% CI, 31%-51%) of patients with a median time to onset of 2 weeks (range, 3 days to 16 months). TRK inhibitor dose reduction was the most effective intervention for dizziness. Pain upon temporary or permanent TRK inhibitor discontinuation was observed in 35% (95% CI, 24%-46%) of patients; this was more common with longer TRK inhibitor use. TRK inhibitor reinitiation was the most effective intervention for withdrawal pain. CONCLUSIONS: TRK inhibition-related AEs including weight gain, dizziness, and withdrawal pain occur in a substantial proportion of patients receiving TRK inhibitors. This safety profile is unique relative to other anticancer therapies and warrants careful monitoring. These on-target toxicities are manageable with pharmacologic intervention and dose modification.


Subject(s)
Protein-Tyrosine Kinases , Receptor, trkA , Humans , Proto-Oncogene Proteins , Pyrazoles , Pyrimidines , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...