Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 213: 1-9, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30879647

ABSTRACT

Staphylococcus is the most commonly isolated genus from animals with intramammary infections, and mastitis is the most prevalent disease that affects dairy cows in many countries. These pathogens can live in biofilms, a self-produced matrix, which allow them evade the innate immune system and the antibiotic therapy, thereby producing persistent infections. The aim of this study was to explore the antimicrobial potential of chitosan nanoparticles (Ch-NPs) obtained by the reverse micellar method. We found that the nanoformulation developed presents antimicrobial activity against mastitis pathogens in a dose-dependent manner. Moreover, different experiments corroborated that the antimicrobial effectiveness of Ch-NP was greater than that shown by the native polymer used in the preparation of these nanocomposites. Ch-NPs caused membrane damage to bacterial cells and inhibited bacterial biofilm formation, without affecting the viability of bovine cells. These findings show the great potential of Ch-NPs as therapeutic agent for bovine mastitis treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Mastitis, Bovine/drug therapy , Nanoparticles/chemistry , Staphylococcus/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Cattle , Chitosan/chemical synthesis , Chitosan/chemistry , Dose-Response Relationship, Drug , Female , Hydrophobic and Hydrophilic Interactions , Mastitis, Bovine/microbiology , Structure-Activity Relationship
2.
Chemphyschem ; 19(6): 759-765, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29418056

ABSTRACT

In the present work we show how two biocompatible solvents, methyl laurate (ML) and isopropyl myristate (IPM), can be used as a less toxic alternative to replace the nonpolar component in a sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles (RMs) formulation. In this sense, the micropolarity and the hydrogen-bond ability of the interface were monitored through the use of the solvatochromism of a molecular probe (1-methyl-8-oxyquinolinium betaine, QB) and Fourier transform infrared spectroscopy (FTIR). Our results demonstrate that the micropolarity sensed by QB in ML RMs is lower than in IPM RMs. Additionally, the water molecules form stronger H-bond interactions with the polar head of AOT in ML than in IPM. By FTIR was revealed that more water molecules interact with the interface in ML/AOT RMs. On the other hand, for AOT RMs generated in IPM, the weaker water-surfactant interaction allows the water molecules to establish hydrogen bonds with each other trending to bulk water more easily than in ML RMs, a consequence of the dissimilar penetration of nonpolar solvents into the interfacial region. The penetration process is strongly controlled by the polarity and viscosity of the external solvents. All of these results allow us to characterize these biocompatible systems, providing information about interfacial properties and how they can be altered by changing the external solvent. The ability of the nontoxic solvent to penetrate or not into the AOT interface produces a new interface with attractive properties.

3.
J Org Chem ; 71(23): 8847-53, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17081015

ABSTRACT

In this paper, we report the effect of ionic liquids on substitution reactions using a variety of anionic nucleophiles. We have combined new studies of the reactivity of polyatomic anions, acetate, trifuoroacetate, cyanide, and thiocyanide, with our previous studies of the halides in [C4C1py][Tf2N], [C4C1py][TfO], and [C4C1im][Tf2N] (where [C4C1im]+ is 1-butyl-3-methylimidazolium and [C4C1py]+ is 1-butyl-1-methylpyrrolidinium) and compared their reactivities, k2, to the same reactions in the molecular solvents dichloromethane, dimethylsulfoxide, and methanol. The Kamlet-Taft solvent descriptors (alpha, beta, pi) have been used to analyze the rates of the reactions, which were found to have a strong inverse dependency on the alpha value of the solvent. This result is attributed to the ability of the solvent to hydrogen bond to the nucleophile, so reducing its reactivity. The Eyring activation parameters (DeltaH++ and DeltaS++), while confirming the reaction mechanism, do not offer obvious correlations with the Kamlet-Taft solvent descriptors.

SELECTION OF CITATIONS
SEARCH DETAIL
...