Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068942

ABSTRACT

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Subject(s)
Nanodiamonds , Neoplasms , Humans , Nanodiamonds/chemistry , Radiation Tolerance , Cell Survival , Neoplasms/radiotherapy
2.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957039

ABSTRACT

Nanostructured titania is one of the most commonly encountered constituents of nanotechnology devices for use in energy-related applications, due to its intrinsic functional properties as a semiconductor and to other favorable characteristics such as ease of production, low toxicity and chemical stability, among others. Notwithstanding this diffusion, the quest for improved understanding of the physical and chemical mechanisms governing the material properties and thus its performance in devices is still active, as testified by the large number of dedicated papers that continue to be published. In this framework, we consider and analyze here the effects of the material morphology and structure in determining the energy transport phenomena as cross-cutting properties in some of the most important nanophase titania applications in the energy field, namely photovoltaic conversion, hydrogen generation by photoelectrochemical water splitting and thermal management by nanofluids. For these applications, charge transport, light transport (or propagation) and thermal transport are limiting factors for the attainable performances, whose dependence on the material structural properties is reviewed here on its own. This work aims to fill the gap existing among the many studies dealing with the separate applications in the hope of stimulating novel cross-fertilization approaches in this research field.

3.
Nanomaterials (Basel) ; 12(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458062

ABSTRACT

Activated hard carbons, obtained from the pyrolysis of various waste biomasses, were prepared and characterized for use as the active material for the fabrication of battery electrodes. The preparation consisted of a pyrolysis process, followed by an activation with KOH and a further high-temperature thermal process. TG and DTA were used to discriminate the steps of the activation process, while SEM, XRD, and Raman characterization were employed to evaluate the effects of activation. The activated carbons were tested as electrodes in lithium-sulfur and lithium-ion batteries. The carbonaceous materials coming from cherry stones and walnut shells have proved to be particularly suitable as electrode components. When used as anodes in lithium-ion batteries, both carbons exhibited a high first cycle discharge capacity, which was not restored during the next charge. After the first two cycles, in which there was a marked loss of capacity, both electrodes showed good reversibility. When used as cathodes in lithium-sulfur batteries, both carbons exhibited good catalytic activity against the redox reaction involving sulfur species with good cycle stability and satisfactory Coulombic efficiency.

4.
Environ Sci Pollut Res Int ; 25(28): 28725-28729, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30109688

ABSTRACT

Using Fourier transform infrared spectroscopy (FT-IR) measurements and comparing the spectrum peaks (range 4000-600 cm-1) with reference spectra database and instrument libraries, we observed new evidence of the ingestion of microplastic particles analyzing the digestive tracts of Talitrus saltator. Specimens, sampled in central Italy, probably ingested the particles with natural detritus. Since worldwide many species of invertebrates and vertebrates (e.g., birds) feed on Amphipoda along coastal ecosystems, we hypothesized that microplastic in these crustaceans can be accumulated along the food chain.


Subject(s)
Amphipoda/chemistry , Dietary Exposure/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Ecotoxicology/methods , Environmental Monitoring/methods , Food Chain , Gastrointestinal Contents , Italy , Polyethylene/analysis , Spectroscopy, Fourier Transform Infrared
5.
Environ Pollut ; 236: 645-651, 2018 May.
Article in English | MEDLINE | ID: mdl-29433105

ABSTRACT

Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (<5 mm) were found in all sampled surfaces. The particles collected were classified depending on their number, shape and composition. The shape distribution showed the dominating occurrence of fragments (73.7%). The chemical composition of all examined samples clearly shows dominating presence of polyethylene (45%), polystyrene (18%) and polypropylene (15%). The results provide significant relations among the different contribution of direct and diffuse sources to the quantity of microplastics, highlighting the importance of understanding the spatial distribution dynamics of microplastics within a lake system that acts as a sink and source of plastic particles.


Subject(s)
Environmental Monitoring , Plastics/analysis , Waste Products/analysis , Water Pollutants, Chemical/analysis , Environmental Pollution/analysis , Italy , Lakes/chemistry , Polyethylene , Polystyrenes , Rivers
6.
Beilstein J Nanotechnol ; 6: 886-92, 2015.
Article in English | MEDLINE | ID: mdl-25977859

ABSTRACT

For dye-sensitized solar cells (DSSC), the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is produced by the concurrent phenomena of light absorption by dye molecules and light trapping in the mesoporous, titania photoanode structure. The decoupling of these two phenomena is important for device characterization and the design of novel photoelectrode geometries with increased optical performance. In this paper, this task is addressed by introducing a spectral absorption enhancement factor as a parameter to quantify the light trapping effect. The experimental value of this parameter was obtained by comparing the experimentally determined fraction of absorbed light by a dye-sensitized photoanode with the light absorbed by the dye without the mesoporous titania structure. In order to gain more insight from this result, the fraction of light absorbed in the photoanode (on the basis of the dye loading capacity of the titania nanospheres) was also calculated by an optical model for the two extreme cases of the absence of light trapping and maximum light trapping. Accordingly, the photocurrent was calculated under the assumption of solar irradiation, which defined two useful boundaries. Using the experimentally derived values of the spectral absorption enhancement factor in the photoanode optical model, the DSSC short-circuit current can be calculated with good agreement with the value measured in practical devices based on the same photoanode structures. Therefore, our approach provides a realistic description of a practical device and can be exploited as an useful tool to assess the optical functionality of novel photoanode structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...