Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Resusc Plus ; 18: 100583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404755

ABSTRACT

Aim: Current guidelines for cardiopulmonary resuscitation (CPR) recommend a one-size-fits-all approach in relation to the positioning of chest compressions. We recently developed RescueDoppler, a hands-free Doppler ultrasound device for continuous monitoring of carotid blood flow velocity during CPR. The aim of the present study is to investigate whether RescueDoppler via real-time hemodynamic feedback, could identify both optimal and suboptimal compression positions. Methods: In this model of animal cardiac arrest, we induced ventricular fibrillation in five domestic pigs. Manual chest compressions were performed for ten seconds at three different positions on the sternum in random order and repeated six times. We analysed Time Average Velocity (TAV) with chest compression position as a fixed effect and animal, position, and sequential time within animals as random effects. Furthermore, we compared TAV to invasive blood pressure from the contralateral carotid artery. Results: We were able to detect changes in TAV when altering positions. The positions with the highest (range 19 to 48 cm/s) and lowest (6-25 cm/s) TAV were identified in all animals, with corresponding peak pressure 50-81 mmHg, and 46-64 mmHg, respectively. Blood flow velocity was, on average, highest at the middle position (TAV 33 cm/s), but with significant variability between animals (SD 2.8) and positions within the same animal (SD 9.3). Conclusion: RescueDoppler detected TAV changes during CPR with alternating chest compression positions, identifying the position yielding maximal TAV. Future clinical studies should investigate if RescueDoppler can be used as a real-time hemodynamical feedback device to guide compression position.

2.
Article in English | MEDLINE | ID: mdl-38419616

ABSTRACT

Background: Shaft fractures of the femur are commonly treated with intramedullary nailing, which can release bone marrow emboli into the bloodstream. Emboli can travel to the lungs, impairing gas exchange and causing inflammation. Occasionally, emboli traverse from the pulmonary to the systemic circulation, hindering perfusion and resulting in injuries such as heart and brain infarctions, known as fat embolism syndrome. We studied the extent of systemic bone marrow embolization in a pig model. Methods: Twelve anesthetized pigs underwent bilateral intramedullary nailing of the femur, while 3 animals served as sham controls. Monitoring included transesophageal echocardiography (TEE), pulse oximetry, electrocardiography, arterial blood pressure measurement, and blood gas and troponin-I analysis. After surgery, animals were monitored for 240 minutes before euthanasia. Post mortem, the heart, lungs, and brain were biopsied. Results: Bone marrow emboli were found in the heart and lungs of all 12 of the pigs that underwent intramedullary nailing and in the brains of 11 of them. No emboli were found in the sham group. The pigs subjected to intramedullary nailing exhibited significant hypoxia (PaO2/FiO2 ratio, 410 mm Hg [95% confidence interval (CI), 310 to 510) compared with the sham group (594 mm Hg [95% CI, 528 to 660]). The nailing group exhibited ST-segment alterations consistent with myocardial ischemia and a significant increase in the troponin-I level compared with the sham group (1,580 ng/L [95% CI, 0 to 3,456] versus 241 ng/L [95% CI, 0 to 625] at the 240-minute time point; p = 0.005). TEE detected emboli in the right ventricular outflow tract, but not systemically, in the nailing group. Conclusions: Bilateral intramedullary nailing caused bone marrow emboli in the lungs and systemic emboli in the heart and brain in this pig model. The observed clinical manifestations were consistent with coronary and pulmonary emboli. TEE detected pulmonary but not systemic embolization. Clinical Relevance: Femoral intramedullary nailing in humans is likely to result in embolization as described in our pig model. Focused monitoring is necessary for detection of fat embolism syndrome. Absence of visual emboli in the left ventricle on TEE does not exclude the occurrence of systemic bone marrow emboli.

3.
Resusc Plus ; 15: 100412, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37448689

ABSTRACT

Background/Purpose: Pulse palpation is an unreliable method for diagnosing cardiac arrest. To address this limitation, continuous hemodynamic monitoring may be a viable solution. Therefore, we developed a novel, hands-free Doppler system, RescueDoppler, to detect the pulse continuously in the carotid artery. Methods: In twelve pigs, we evaluated RescueDopplers potential to measure blood flow velocity in three situations where pulse palpation of the carotid artery was insufficient: (1) systolic blood pressure below 60 mmHg, (2) ventricular fibrillation (VF) and (3) pulseless electrical activity (PEA). (1) Low blood pressure was induced using a Fogarty balloon catheter to occlude the inferior vena cava. (2) An implantable cardioverter-defibrillator induced VF. (3) Myocardial infarction after microembolization of the left coronary artery caused True-PEA. Invasive blood pressure was measured in the contralateral carotid artery. Time-averaged blood flow velocity (TAV) in the carotid artery was related to mean arterial pressure (MAP) in a linear mixed model. Results: RescueDoppler identified pulsatile blood flow in 41/41 events with systolic blood pressure below 60 mmHg, with lowest blood pressure of 19 mmHg. In addition the absence of spontaneous circulation was identified in 21/21 VF events and true PEA in 2/2 events. The intraclass correlation coefficient within animals for TAV and MAP was 0.94 (95% CI. 0.85-0.98). Conclusions: In a porcine model, RescueDoppler reliably identified pulsative blood flow with blood pressures below 60 mmHg. During VF and PEA, circulatory arrest was rapidly and accurately demonstrated. RescueDoppler could potentially replace unreliable pulse palpation during cardiac arrest and cardiopulmonary resuscitation.

4.
J Emerg Med ; 58(2): 234-244, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31843322

ABSTRACT

BACKGROUND: Patient safety incidents are commonly observed in critical and high demanding care settings, including the emergency department. There is a need to understand what causes patient safety incidents in emergency departments and determine the implications for excellence in practice. OBJECTIVE: Our aim was to systematically review the international literature on patient safety incidents in emergency departments and determine what can be learned from reported incidents to inform and improve practice. DISCUSSION: Patient safety incidents in emergency departments have a number of recognized contributing factors. These can be used as groundwork for the development of effective tools to systematically identify incident risk. Participation in efforts to diminish risk and improve patient safety through appropriate incident reporting is critical for removing barriers to safe care. CONCLUSIONS: This review enhances our awareness of contributing factors to patient safety incidents within emergency departments and encourages researchers from different disciplines to investigate the causes of practice errors and formulate safety improvement strategies.


Subject(s)
Emergency Service, Hospital , Patient Safety , Risk Management , Diagnostic Errors , Health Services Research , Humans , Medical Errors , Safety Management , Total Quality Management
SELECTION OF CITATIONS
SEARCH DETAIL
...